期刊文献+

基于Keras的MNIST数据集识别模型 被引量:9

Keras-based MNIST Data Set Recognition Model
下载PDF
导出
摘要 Keras是以TensorFlow+Theano为后端的深度学习框架,相比于TensorFlow,Keras更加灵活快速。相比于经典的神经网络模型,卷积神经网络对图像的识别效率更高。文章基于Keras建立深度学习模型,以MNIST数据集为例,构建卷积神经网络,训练模型并进行预测,得到的MNIST数据集识别模型,达到了99.23%的识别正确率。 Keras is a deep learning framework based on TensorFlow+Theano.Keras is more flexible and faster than Tensorflow.Convolutional neural networks are more efficient at identifying images than classical neural network models.This paper builds a deep learning model based on Keras.Taking the MNIST data set as an example,constructing a convolutional neural network,training the model and predicting it,the obtained MNIST dataset recognition model achieves a recognition accuracy rate of 99.23%.
作者 郭梦洁 杨梦卓 马京九 GUO Mengjie;YANG Mengzhuo;MA Jingjiu(Anhui University,Hefei 230601,China;Yangtze University,Wuhan 430100,China)
机构地区 安徽大学 长江大学
出处 《现代信息科技》 2019年第14期18-19,23,共3页 Modern Information Technology
关键词 深度学习 Keras MNIST 数据集卷积神经网络 deep learning Keras MNIST data set convolution neural network
  • 相关文献

参考文献1

二级参考文献15

  • 1Alex Krizhevsky, Ilya Sutskever, Geoff Hinton. Imagenet classification with deep con-volutional neural networks[J]. Advances in Neural Information Processing Systems 25, 2012:1106-1114.
  • 2DH Hubel,TN Wiesel. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex[J]. Journal of Physi- ology(London), 1962,160 : 106-154.
  • 3K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in po- sition[J]. Biological Cybernetics, 1980, 36:193-202.
  • 4Y. I~ Cun, L. Bottou, Y. Bengio, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86( 11 ) :2278-2324.
  • 5Y. LeCun, B. Boser, J. S. Denker, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4): 541-551.
  • 6Yoshua Bengio, Learning Deep Architectures for AI[J]. Machine Learning, 2009,2( 1 ) : 1-127.
  • 7Glorot X, Bordes A,Bengio, Y. Deep sparse rectifier networks[C]. Proceedings of the 14th International Conference on Artificial Intelli- gence and Statistics. JMLR W&CP Volume, 2011,15:315-323.
  • 8Yoshua Bengio, Aaron Courville, and Pascal Vincent, representation learning: A review and new rerspectives[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, Issue No.08 - Aug. (2013 vol.35):1798-1828.
  • 9IA Yang-qing, Shelhamer Evan, Donahue Jeff, et al. caffe: convolutional architecture for Fast feature embedding[EB/OL]. 2014, arXiv preprint arXiv: 1408.5093.
  • 10Know your meme: We need to go deeper [EB/OL] [2014-12-01]. http://knowyourmeme.com/memes/we-need-to-go-deeper.

共引文献45

同被引文献65

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部