期刊文献+

A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring 被引量:14

原文传递
导出
摘要 Flexible triboelectric nanogenerators (TENGs)-based pressure sensors are very essential for the wide-range applications, comprising wearable healthcare systems, intuitive human-device interfaces, electronic-skin (e-skin), and artificial intelligence. Most of conventional fabrication methods used to produce high-performance TENGs involve plasma treatment, photolithography, printing, and electro-deposition. However, these fabrication techniques are expensive, multi-step, time-consuming and not suitable for mass production, which are the main barriers for efficient and cost-effective commercialization of TENGs. Here, we established a highly reliable scheme for the fabrication of a novel eco-friendly, low cost, and TENG-based pressure sensor (TEPS) designed for usage in self-powered-human gesture detection (SP-HGD) likewise wearable healthcare applications. The sensors with microstructured electrodes performed well with high sensitivity (7.697 kPa^-1), a lower limit of detection (~ 1 Pa), faster response time (< 9.9 ms), and highly stable over > 4,000 compression-releasing cycles. The proposed method is suitable for the adaptable fabrication of TEPS at an extremely low cost with possible applications in self-powered systems, especially e-skin and healthcare applications.
出处 《Nano Research》 SCIE EI CAS CSCD 2019年第8期1789-1795,共7页 纳米研究(英文版)
  • 相关文献

参考文献8

二级参考文献36

  • 1Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859-864.
  • 2Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L. F.; Park, B.; Sub, K.-Y.; Kim, T. I.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222-226.
  • 3Ilievski, F.; Mazzeo, A. D.; Shepherd, R. E.; Chert, X.; Whitesides, G. M. Soft robotics for chemists. Angew. Chem., Int. Ed. 2011, 50, 1890-1895.
  • 4Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J. S.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839-6846.
  • 5Chen, L. Y.; Tee, B. C. K.; Chortos, A. L.; Schwartz, G.; Tse, V.; Lipomi, D. J.; Wong, H. S. P.; McConnell, M. V.; Bao, Z. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 2014, 5, 5028.
  • 6Lee, M.; Bae, J.; Lee, J.; Lee, C. S.; Hong, S.; Wang, Z. L. Self-powered environmental sensor system driven by nano- generators. Energy Environ. Sci. 2011, 4, 3359-3363.
  • 7Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Sub, K. Y. A flexible and highly sensitive strain- gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11,795-801.
  • 8Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242-246.
  • 9Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102-105.
  • 10Xue, X. Y.; Wang, S. H.; Guo, W. X.; Zhang, Y.; Wang, Z. L. Hybridizing energy conversion and storage in a mechanical- to-electrochemical process for self-charging power cell. Nano Lett. 2012, 12, 5048-5054.

共引文献72

同被引文献57

引证文献14

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部