期刊文献+

改进的固定交通检测器缺失数据综合修复方法 被引量:9

Improved Modification Method of Missing Data for Location-specific Detector
下载PDF
导出
摘要 基于检测器数据的时空相关性,为缺失数据修复模型动态地选择解释变量,在综合考虑检测器数据的周期性趋势和实时变化特性的基础上,提出了一种改进的缺失数据修复方法.对上海市南北高架的线圈流量数据进行数据修复精度测试.结果表明,相较于传统的支持向量回归(SVR)模型,该方法在3个测试检测器上的数据修复平均绝对误差分别减小了3.80%、3.40%、25.23%,并且在数据连续缺失1~10个时平均绝对百分比误差均低于6%. Based on the temporal and spatial correlation of detector data, the explanatory variables were dynamically selected for data repair model, and an improved modification method of missing data was proposed considering periodic trend and real-time variability comprehensively. The proposed method was assessed with the data of location-specific detectors in Shanghai, China. Compared with support vector regression(SVR) model, the mean absolute error of three detectors are reduced by 3.80%, 3.40%, 25.23%, and the mean absolute percentage error is less than 6% under different data missing conditions.
作者 苗旭 王忠宇 邹亚杰 吴兵 MIAO Xu;WANG Zhongyu;ZOU Yajie;WU Bing(Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;College of Transport and Communications, Shanghai Maritime University, Shanghai 201306, China)
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第10期1477-1484,共8页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(51608386)
关键词 交通运输系统工程 缺失数据修复 周期性 支持向量回归(SVR) engineering of communications and transportation system missing data modification periodic pattern support vector regression(SVR)
  • 相关文献

参考文献4

二级参考文献31

  • 1韩卫国,王劲峰,胡建军.交通流量数据缺失值的插补方法[J].交通与计算机,2005,23(1):39-42. 被引量:24
  • 2JOU Y J, WEN Y H, LEE T T, et al. Missing data treatment on travel time estimation for ATIS [C]//IEEE. IEEE International Conference on Systems, Man and Cybernetics. Taiwan: IEEE, 2003: 102-107.
  • 3CLARK S, GRANT MULLER S. CHEN Hai-bo. Cleaning of matched license plate data [J]. Transportation Research Record, 2002(1804): 1-7.
  • 4VAN LINT J W C, VAN ZUYLEN H J. Monitoring and predicting freeway travel time reliability using width and skew of the day-to-day travel time distribution[J]. Transpor tation Research Record, 2005(1917): 54-62.
  • 5VAN LINT J W C. Reliable travel time prediction for free ways[D]. Delft: Delft University of Technology, 2004.
  • 6WANG Yi-bing, PAPAGEORGIOU M. Real-time freeway traffic state estimation based on extended Kalman filter: a general approach[J]. Transportation Research Part B: Methodological, 2005, 39(2): 141-167.
  • 7Stanislaw B. Data screening evaluation test report[R]. Chicago: Urban Transportation Center, 1996.
  • 8Koppelman F S, Lin W. Development of an expressway incident detection algorithm for the advance area based on the California algorithm set[R]. Evanston: the Transportation Center.1997.
  • 9江龙晖 姜桂艳.交通传感器数据的筛选和检验条件分析[A]..2003全国智能交通系统交通信息采集与融合技术研讨会[C].杭州:浙江大学出版社,2003..
  • 10刘同明 夏祖勋 等.数据融合技术及其应用[M].北京:国防工业出版社,2000..

共引文献67

同被引文献65

引证文献9

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部