期刊文献+

基于量纲一指标和极限学习机的滚动轴承故障诊断方法 被引量:5

Rolling Bearing Fault Diagnosis Method Based on Dimensionless Parameters and Extreme Learning Machine
下载PDF
导出
摘要 时域中的量纲一指标因对故障敏感,被广泛运用于机械故障诊断中,但是目前量纲一指标在诊断过程中存在严重交叉问题,即量纲一指标对于不同故障状态在特征空间中存在混叠现象。为了解决这个问题,提出基于量纲一指标和极限学习机的滚动轴承故障识别方法,采用美国西储大学轴承数据中心网站公开发布的轴承探伤数据集,验证算法诊断效果。为了进一步验证算法的优越性,将该算法与BP神经网络、支持向量机(SVM)和GripsearchSVM3种算法进行比较,结果表明:基于量纲一指标和极限学习机的故障诊断方法能够提高滚动轴承故障诊断效率和分类准确率。 The time-domain dimensionless parameters that are sensitive to the fault models are used widely in mechanical fault diagnosis,but it also has serious crossover problems,that is,the dimensionless parameters have aliasing in the feature space for different fault states.In order to solve this problem,a method based on time-domain dimensionless parameters and Extreme Learning Machine(ELM)is presented,which is used for fault diagnosis of rolling bearings.The accuracy and effectiveness of the method was validated by the actual Rolling experimental data from a public site on the net.The experimental results show that further compared with the Back Propagation(BP),State Vector Machine(SVM)and Grip search SVM for advantages,rolling bearing fault diagnosis method based on time-domain dimensionless parameters and ELM has faster speed and higher classification accuracy.
作者 覃爱淞 胡勤 张清华 吕运容 孙国玺 QIN Aisong;HU Qin;ZHANG Qinghua;LV Yunrong;SUN Guoxi(Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, Maoming Guangdong 525000, China;Guangdong Petrochemical Equipment Engineering Technology Research Center, Maoming Guangdong 525000, China)
出处 《机床与液压》 北大核心 2019年第19期171-175,共5页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(61473094 61673127) 广东省自然科学基金资助项目(2016A030313823) 茂名市科技计划项目(2017317)
关键词 极限学习机 量纲一指标 滚动轴承 故障诊断 Extreme Learning Machine Dimensionless parameters Rolling bearing Fault diagnosis
  • 相关文献

参考文献8

二级参考文献47

共引文献96

同被引文献53

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部