期刊文献+

可变算子图像边缘复杂目标特征识别方法仿真 被引量:5

Simulation of Complex Target Feature Recognition Method for Variable Operator Image Edge
下载PDF
导出
摘要 图像边缘复杂目标特征识别是图像处理过程中一个重要的步骤,为了准确识别图像边缘复杂目标特征,提出基于可变算子的图像边缘复杂目标特征识别方法.将含噪图像在小波变换域中系数的聚焦特征作为研究依据,利用中值滤波方法代替高斯滤波对图像进行滤除.通过迭代算法计算图像的高、低阈值,利用数学的形式细化识别出的图像,使识别到的图像边缘较优,且能够有消除外界的干扰.与传统方法相比,所提方法具有很好的去噪效果,且能够快速、准确识别出图像边缘复杂目标特征,提升图像边缘识别效果. The recognition for complex target feature of image edge is an important step during the image processing. In order to accurately identify the complex target feature of image edge, this article puts forward a method to recognize the complex target feature of image edge based on variable operator. The focusing characteristic of coefficient of noisy image in the wavelet transform domain was taken as the research basis. The median filtering method was used to take the place of Gaussian filtering, and thus to filter the image. The iterative algorithm was used to calculate the high threshold value and low threshold value of image. The recognized image was refined by mathematical means, so that the edge of the recognized image was better and the interference of the outside could be eliminated. Compared with the traditional method, the proposed method has a good effect of noise reduction. Meanwhile, the proposed method can quickly and accurately identify complex target features at the edge of image and improve the effect of image edge recognition.
作者 叶兵 马伟东 YE Bing;MA Wei-dong(School of Electronic Science and Applied Physics,Hefei University of Technology,Hefei Anhui 230000,China)
出处 《计算机仿真》 北大核心 2019年第10期453-457,共5页 Computer Simulation
基金 安徽省自然科学基金资助(J2014AKZR0032)
关键词 可变算子 图像边缘 复杂目标特征 识别方法 Variable operator Image edge Complex target feature Recognition method
  • 相关文献

参考文献12

二级参考文献111

  • 1尹业宏,王涛,陈颖.基于FPGA的图像预处理滤波算法[J].光学与光电技术,2004,2(5):61-64. 被引量:14
  • 2范生宏,黄桂平,陈继华,李广云,周华.Canny算子对人工标志中心的亚像素精度定位[J].测绘科学技术学报,2006,23(1):76-78. 被引量:33
  • 3张利平,潘宏侠,黄晋英.智能车辆视觉系统的障碍物边缘检测[J].计测技术,2006,26(4):29-31. 被引量:2
  • 4娄越,相里斌,刘波.基于背景粗糙度估计的红外目标检测算法[J].光子学报,2007,36(9):1759-1763. 被引量:9
  • 5ARBELAEZ P, MAIRE M, FOWLKES C, et al. Contour Detection and Hierarchical Image Segmentation. IEEE Trans on Pattern Analy- sis and Machine Intelligence, 2011, 33 (5) : 898-916.
  • 6SILBERMAN N, FERGUS R. Indoor Scene Segmentation Using a Structured Light Sensor // Proc of the IEEE International Confe- rence on Computer Vision Workshops. Barcelona, Spain, 2011 : 601-608.
  • 7CANNY J. A Computational Approach to Edge Detection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1986, PAMI-8 (6) : 679-698.
  • 8SHI J, MALIK J. Normalized Cuts and Image Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 888 -905.
  • 9TREISMAN A, SOUTHER J. Search Asymmetry: A Diagnostic for Preattentive Processing of Separable Features. Journal of Experimen- tal Psychology: General, 1985, 114(3) : 285-310.
  • 10I-IUANG J B, MENQ C H. Automatic Data Segmentation for Geo- metric Feature Extraction from Unorganized 3-D Coordinate Points. IEEE Trans on Robotics and Automation, 2001, 17 (3) : 268-279.

共引文献181

同被引文献53

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部