期刊文献+

面向铁路私有云的铁路信号集中监测系统迁移方案研究 被引量:11

Migration Scheme of Railway Centralized Signaling Monitoring System for Railway Private Cloud
下载PDF
导出
摘要 在充分研究云计算平台和铁路信号集中监测系统的基础上,重新构建面向铁路私有云计算平台的铁路局集团公司/电务段层信号集中监测子系统的框架。从两个角度进行阐述,一方面是总结铁路信号集中监测系统发展演进的情况和分析信号集中监测系统上云的需求;另一方面对铁路私有云进行概括描述,并对信号集中监测系统向云平台迁移方案进行详细阐述。该迁移方案论证和体现了私有云计算平台大规模、虚拟化、高可靠性、高可扩展性等优势,为信号集中监测系统中的铁路局集团公司/电务段层监测子系统业务向云平台迁移提供理论基础和实验室试验数据,为后续工程现场实现系统向云平台迁移提供可行性的探索。 On the basis of fully studying cloud computing platform and railway centralized signaling monitoring system, the framework of railway bureau group company / signal & communication depot layer signal centralized monitoring subsystem for the railway private cloud computing platform is reconstructed. This paper elaborates from two angles. On the one hand, it summarizes the development and evolution of the railway centralized signaling monitoring system and analyzes the cloud demand on the centralized signaling monitoring system;on the other hand, it outlines railway private cloud and analyzes centralized signaling monitoring system and explains in detail the cloud platform migration plan. The migration plan demonstrates and reflects the advantages of large-scale, virtualized, high-reliability, and high-scalability of the private cloud computing platform, and provides theoretical basis and laboratory test data for the migration from the business of railway bureau group company/signal & communication depot layer monitoring subsystem in the centralized signaling monitoring system to the cloud platform , which provides a feasible exploration for the subsequent project site to realize the migration of the system to the cloud platform.
作者 李坤妃 Li Kunfei(Beijing Automation Engineering School, Beijing 100101, China)
出处 《铁路通信信号工程技术》 2019年第10期34-39,共6页 Railway Signalling & Communication Engineering
关键词 信号集中监测 铁路私有云 云迁移 虚拟化 Centralized Signaling Monitoring System (CSM) railway private cloud cloud migration virtualization
  • 相关文献

参考文献9

二级参考文献42

  • 1于鸿飞,秦勇,王子洋,刘瑜,梁平.城市轨道交通应急处置辅助决策系统的研究[J].交通信息与安全,2013,31(5):163-168. 被引量:6
  • 2陶雪娇,胡晓峰,刘洋.大数据研究综述[J].系统仿真学报,2013,25(S1):142-146. 被引量:344
  • 3周为钢,杨良怀,龚卫华,等.大数据处理技术在智能交通中的应用[C]//第八届中国智能交通年会优秀论文集,2013.
  • 4Moreno-Vozmediano R, Montero RS, LIorente IM. Key challenges in cloud computing: Enabling the future Internet of services[J]. IEEE Transactions on Internet Computing, 2013, 17 (4) : 18-25.
  • 5Kliazovich D, Bouvry P, Khan SU. GreenCloud: A packet-level simulator of energy-aware cloud computing data centers[J]. The Journal ofSupercomputing, 2012, 62 (3): 1263 1283.
  • 6刘军,史天运,李平,马小宁.铁路云计算数据中心总体框架研究与设计[C].第九届中国智能交通年会,2014.
  • 7李文杰,秦勇,贾利民.基于SOA的城市轨道交通应急管理系统集成的研究[C]//中国职业安全健康协会.第一届全国安全科学理论研讨会论文集.北京:中国商务出版社,2007:367-375.
  • 8PENG Y,ZHANG Y,TANG Y,et al. An incident information management framework based on data integration, data mining, and multi-criteria decision making[J]. Decision Support Systems, 2011,51 (2) : 316-327.
  • 9HRISTIDIS V, CHEN S C, LI TAO, et al. Survey of data management and analysis in disaster situations[J]. Journal of Systems & Software,2010,83 (10) : 1701 - 1714.
  • 10北京市轨道交通指挥中心,TeradataUniverse.首都轨道交通大数据实践与探索[EB/OL].百度文库,http:Hdwz.cn/1Hzeal.

共引文献81

同被引文献61

引证文献11

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部