期刊文献+

基于视觉伺服大型输油臂机器人智能对接系统 被引量:4

Intelligent Docking System for Large Loading Arm Robot Based on Visual Servo
下载PDF
导出
摘要 针对传统输油臂管口对接过程效率低、自动化程度低等问题,设计了基于视觉伺服的输油臂机器人智能对接系统。建立了机器人运动学模型,设计了多层次开放式的机器人实时控制系统,采用多条件约束校验SVM分类器,组成了在线自学习双目立体视觉系统,提高了复杂环境下视觉定位系统的泛化能力及稳定性。实验表明所提出的校验SVM分类器识别准确率为97.80%,定位准确率为92.86%;所建立的机器人智能对接系统对接成功率为91.43%,系统故障率仅为1.40%,说明校验SVM分类器具备良好的准确性和稳定性,整个输油臂机器人智能对接系统稳定性良好,能够满足自动对接要求。 To overcome the problems of inefficiency and low-level automation of traditional loading arm nozzle docking process,a smart docking system of loading arm robot based on the visual servo was designed.The robot kinematics model was established,and the multi-level and open real-time control system of the robot was designed.The SVM classifier with multi-condition constraint checking(C-SVM)was used to form the binocular stereo vision system with online self-learning ability,which improved the generalization ability and stability of the visual measurement positioning system in complex environments.Experiments show that the proposed C-SVM classifier target nozzle identification accuracy is 97.80%,the positioning accuracy is 92.86%,the docking success rate is 91.43%,and the system failure rate is only 1.40%.It illustrates that the C-SVM classifier has good accuracy and stability,and the entire robot arm system has good stability and can meet the requirements of automatic docking.
作者 白元明 孔令成 赵江海 张强 方世辉 BAI Yuan-ming;KONG Ling-cheng;ZHAO Jiang-hai;ZHANG Qiang;FANG Shi-hui(School of Information Science & Engineering,Changzhou University,Changzhou 213164,China;Institute of Advanced Manufacturing Technology,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China;Department of Automation,University of Science and Technology of ChinaHefei 230026,China)
出处 《仪表技术与传感器》 CSCD 北大核心 2019年第10期88-95,116,共9页 Instrument Technique and Sensor
基金 国家自然科学基金项目(61703390) 江苏省重点研发计划项目(BE2017007-1) 青年科学基金项目(61503364)
关键词 输油臂机器人 SVM分类器 视觉识别 定位算法 目标检测 视觉伺服 loading arm robot SVM classifier visual identification location algorithm object detection visual servo
  • 相关文献

参考文献3

二级参考文献17

  • 1张立杰,李永泉,黄真.球面二自由度5R并联机器人的运动学分析[J].中国机械工程,2006,17(4):343-346. 被引量:26
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3Ouerfelli M, Kumar V. Optimization oi" a Spherical Five--bar Parallel Drive Linkage[J]. Transactions of the ASME,Journal of Mechanical Design, 1994, 116:166-173.
  • 4Tavkhelidze D S,Davitashvili N S. Kinematic Analy- sis of Five--link Spherical Meehanism[J]. Mecha- nism and Machine Theory, 1974,9 : 181-190.
  • 5Gosselin C M,Cloutier C, Rancourt D. Kinematic A- nalysis of Spherical Two- degree- of- freedom Parallel Manipulators[C]//Proeeedings of the 1994 ASME Design Technical Conferences. Minneapolis, MN,USA, 1994 : 255-262.
  • 6熊有伦.机器人技术基础[M].武汉:华中理工大学出版社,2003..
  • 7J. Zhang,M. Marsza?ek,S. Lazebnik,C. Schmid.Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study[J]. International Journal of Computer Vision . 2007 (2)
  • 8Smal,I. et al.Particle Filtering for Multiple Object Tracking in Dynamic Fluorescence Microscopy Images: Application to Microtubule Growth Analysis. Medical Imaging, IEEE Transactions on . 2008
  • 9WEBER M,WELLING M,PERONA P.Towards automatic discovery of object cat-egories. IEEE Conference on Computer Vision and Pattern Recognition . 2000
  • 10Delaitre V,Laptev I,Sivic J.Recognizing human actions in still images: a study ofbag-of-features and part-based representations. Proceedings of the BritishMachine Vision Conference . 2010

共引文献89

同被引文献31

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部