摘要
微波技术在矿物分离以及辅助破岩方面具有良好应用前景,但岩石热力学参数对其作用效果影响如何,还不明确。基于此,以黄铁矿与方解石为研究对象,采用数值模拟的方法研究了热传导率和膨胀系数对微波照射后模型温度与应力分布规律。研究发现:(1)随着热传导率的增大,模型整体温度呈下降趋势,最大拉应力位置由模型边缘向接触部位转移;(2)随着方解石热膨胀系数的增大,黄铁矿从受压变成受拉状态,方解石从单一受拉变成拉压并存状态;(3)在达到同等应力水平情况下,微波功率密度越大,能源消耗越少。该研究对了解微波诱发岩石损伤的机理、在矿物分离以及褶皱岩层中的应用具有一定意义。
Microwave technology has excellent application prospects in mineral separation and assisted rock breakage, but it is not clear how thermodynamic parameters of rock will affect its effect. With pyrite and calcite as research objects in this paper, the effects of thermal conductivity and thermal expansion coefficient on the temperature and stress of the model after microwave irradiation were studied by numerical simulation. Results demonstrate that:(1) With the increase of thermal conductivity, the overall temperature of the model decreases the maximum tensile stress shifts from the edge of the model to the contact position;(2) With the increase of the thermal expansion coefficient of calcite, pyrite matrix changes from compression to tension, and calcite changes from single tension to tension and compression coexistence.(3)At the same stress level, the higher the microwave power density, the less energy consumption. This study has great significance for understanding the mechanism of microwave-induced rock damage and its application in mineral separationandfoldrockformation.
作者
朱要亮
俞缙
刘士雨
周建烽
赖永明
ZHU Yao-liang;YU Jin;LIU Shi-yu;ZHOU Jian-feng;LAI Yong-ming(Fujian Research Center for Tunneling and Urban Underground Space Engineering/Huaqiao University, Xiamen 361021, China;College of Engineering/Fujian Jiangxia University, Fuzhou 350108, China;College of Resources Engineering/Longyan University, Longyan 364012, China)
出处
《山东农业大学学报(自然科学版)》
北大核心
2019年第5期790-795,共6页
Journal of Shandong Agricultural University:Natural Science Edition
基金
国家自然科学基金(51609266,51774147)
福建省自然科学基金(2017J01094,2018J01630,2018J01475)
福建省教育厅中青年教师科研项目(JAT160554)
关键词
微波照射
热传导率
热膨胀系数
功率密度
微波辅助破岩
Microwave irradiation
thermal conductivity
thermal expansion coefficient
power density
microwave-assisted rock breakage