期刊文献+

两端具有质量块弹性支撑悬臂梁振动特性研究 被引量:1

Study on vibration characteristics of elastically supported cantilever beam with two end masses
下载PDF
导出
摘要 文章针对两端具有质量块弹性支撑悬臂梁,基于Euler-Bernoulli梁的基本假设,计入质量块的偏心距和转动惯量的影响,利用Hamilton变分原理建立了悬臂梁的运动微分方程和边界条件,获得了计算梁固有频率的特征方程、振型函数及其正交性条件。数值计算结果表明,考虑尖端质量块的偏心距、转动惯量可提高研究结构共振频率和振型的精确度;通过调整竖向平移弹簧刚度系数、转动弹簧刚度系数及尖端质量块质量,可以改变梁的固有频率和振型形状。 For elastically supported cantilever beam with two end masses, based on the basic assumption of the Euler-Bernoulli beam and considering the influence of the eccentricity and the moment of inertia of the masses, the differential equations and boundary conditions of the cantilever beam are established by the Hamilton variational principle. The characteristic equation of the natural frequency analysis, the mode shape function and the orthogonality condition of the beam are obtained. The numerical results show that the accuracy of the resonance frequency and mode shape of the beam can be improved with considering the eccentricity and the moment of inertia of the end masses. By adjusting the vertical translational spring stiffness coefficient and the rotational spring stiffness coefficient, and the mass of the end masses, the natural frequency and mode shape of the beam can be changed.
作者 唐礼平 王建国 TANG Liping;WANG Jianguo(School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2019年第10期1375-1381,共7页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(11172087)
关键词 压电层合梁 弹性支撑悬臂梁 固有频率 正则化振型 piezoelectric laminated beam elastically supported cantilever beam natural frequency normalized mode shape
  • 相关文献

参考文献1

二级参考文献9

  • 1孙爱琴,王建国.复合材料层合板振动主动控制的方法研究[J].合肥工业大学学报(自然科学版),2005,28(10):1312-1316. 被引量:5
  • 2Yousefi-Kome A. Active vibration control of smart structures using piezoelement[D]. Ottawa: Carleton University,1997.
  • 3Bailey T, Hubbard J E. Distributed piezoelectric-polymer active vibration control of a cantilever beam[J]. Journal of Guidance Control, 1985,8(5) :605--611.
  • 4Narayanan S, Balamuruga V. Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators[J]. Journal of Sound and Vibratipn, 2003,262 : 529-- 562.
  • 5Xu S X,Koko T S. Finite element analysis and design of actively controlled piezoelectric smart structures[J]. Finite Elements in Analysis and Design, 2004,40 : 241-- 262.
  • 6Karagulle H, Malgaca L, Oktem H F. Analysis of active vibration control in smart structures by ANSYS[J]. Smart Mater Struct, 2004,13 : 661-- 667.
  • 7Sohn J W, Kim H S, Choi S B. Active vibration control of smart hull structures using piezoelectric actuators[J]. Proc IMechE Part C: J Mechanical Engineering Science, 2006, 220:1329--1337.
  • 8Zabihollah A, Sedagahti S, Ganesan R. Active vibration sup pression of smart laminated beams using layerwise theory and an optimal control strategy[J]. Smart Mater Struct, 2007,16 : 2190 -- 2201.
  • 9王建国,丁根芳,覃艳.基于遗传算法和梯度算法压电层合结构的最优形状控制[J].固体力学学报,2008,29(1):59-65. 被引量:1

共引文献3

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部