期刊文献+

基于Faster RCNN的交通目标检测方法 被引量:2

Traffic Object Detection Method based on Faster RCNN
下载PDF
导出
摘要 针对交通道路中的目标检测问题,提出了一种基于锚点聚类、全锚点训练策略及强化交并比(SIoU)的交通目标检测方法(T-Faster RCNN)。首先,通过一个基于交并比距离的K-means聚类获取交通目标的宽高在比例和尺度两个几何属性的先验知识,生成锚点边界框;其次,将分类损失与焦点损失相结合进行全锚点训练;再次,基于两个边界框所构成的最小闭包生成SIoU,用于筛选建议。在KITTI数据集上进行的对比实验表明本文方法比Faster RCNN的mAP提高了14.4%。 In this paper,a traffic object detection method(T-Faster RCNN),which involves its improvement in three strategies,is proposed.Firstly,an IoU-based K-means clustering strategy is used to generate anchor boxes,where the quantitative geometric attributes of the aspect ratios and scales are extracted from all the objects in the training dataset.After retaining all the anchors,the RPN classification loss borrowed from focal loss is second employed to train the anchors.Finally,a strengthened IoU,which is induced from the minimum closure of two bounding boxes,is proposed to filter proposal candidates.The comparison experiments were implemented on KITTI dataset.In all,the mAP of T-Faster RCNN,which applies the three strategies,is 14.4%higher than that of Faster RCNN.
作者 张琦 丁新涛 王万军 周文 ZHANG Qi;DING Xingtao;WANG Wanjun;ZHOU Wen(School of Computer and Information,Anhui Normal University,Wuhu 241003,China;Anhui Provincial Key Laboratory of Network and Information Security,Wuhu 241003,China)
出处 《皖西学院学报》 2019年第5期50-55,共6页 Journal of West Anhui University
基金 安徽省自然科学基金面上项目(1808085MF171)
关键词 交通目标检测 FASTER RCNN K-MEANS 焦点损失 强化交并比 traffic object detection Faster RCNN K-means focal loss strengthened intersection over union
  • 相关文献

参考文献4

二级参考文献22

  • 1Xiao Jiang-jian, et al. Vehicle Detection and Tracking in Wide Field-of-View Aerial Video [C]// IEEE Conf. on Computer Vi- sion and Pattern Recognition. 2010:13-18.
  • 2Cox I J, A review of statistical data association techniques for motion correspondence[J]. International Journal of Computer Vision, 1993,10(1) : 53-66.
  • 3Okuma K, Taleghani A, Freitas N D, et al. A boosted particle fil- ter:Multitarget detection and tracking [C] // European Confe- rence on Computer Vision. 2004:28-39.
  • 4BrendeI W, Amer M, Todorovic S. Multiobjeet tracking as maxi- mum weight independent set [C]//IEEE Conf. on Computer Vi- sion and Pattern Recognition. 2011:1273-1280.
  • 5Andriluka M, Roth S, Schiele 13. People tracking by detection and people detection by tracking [C]//IEEE Conf. on Computer Vision and Pattern Recognition. 2008.
  • 6Leibe B, Schindler K, Gool L V. Coupled detection and trajectory estimation for multi-object tracking [C] // IEEE InternationalConference on Computer Vision. 2007.
  • 7Felzenszwalb P F, Girshick R B, McAllester D. Discriminatively trained deformable part models [C]//IEEE Conf. on Computer Vision and Pattern Recognition. 2009.
  • 8Viola P, Jones M J, Snow D. Detecting Pedestrians Using Pat- terns of Motion and Appearanee[J]. International Journal ofComputer Vision, 2005,63 (2), 153-161.
  • 9Pavan M, Pelillo M, Dominant sets and pairwise clustering [J]. PAMI, 2007,29(1) : 167-172.
  • 10Ge J, Luo Y, Tei G. Real-time pedestrian detection and tracking at nighttime for driver-assistance systems [J]. Intelligent Trans- portation Systems, IEEE Transactions on, 2009,10(2) : 283-298.

共引文献27

同被引文献30

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部