期刊文献+

M-矩阵Fan积最小特征值的下界 被引量:3

Inferior limit of minimum eigenvalue of Fan product of M-matrices
下载PDF
导出
摘要 矩阵的Fan积是矩阵理论研究的重要问题之一.利用特征值包含域定理给出两个非奇异M-矩阵Fan积最小特征值的下界估计式,所得结果只依赖于两个非奇异M-矩阵的元素,便于计算.数值例子表明新估计式在一定条件下改进了现有的一些结果. Fan product of matrices is one of important problems in matrix theory. An estimator of inferior limit of minimum eigenvalue of Fan product of two nonsingular M-matrices is given by means of characteristic value containing domain theorem, and the result obtained depends only on the entries in the two nonsingular M-matrices, so that the computation is easy. Numerical example shows that the new estimator will improve several existing results on certain conditions.
作者 钟琴 ZHONG Qin(Department of Mathematics, Jinjiang College Sichuan University, Pengshan 620860, China)
出处 《兰州理工大学学报》 CAS 北大核心 2019年第5期149-152,共4页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(11471225) 四川省教育厅自然科学研究项目(18ZB0364)
关键词 M-矩阵 Fan积 最小特征值 下界 M-matrix Fan product minimum eigenvalue inferior limit
  • 相关文献

参考文献3

二级参考文献30

  • 1程光辉,成孝予,黄廷祝.M-矩阵和H-矩阵在Fan积下的Oppenheim型不等式[J].纯粹数学与应用数学,2006,22(2):253-255. 被引量:4
  • 2Horn R A, Johnson C R. Topics in matrix analysis[M]. New York: Cambridge University Press,1991.
  • 3Huang Rong. Some inequalities for the Hadamard product and the Fan product of matrices [J].Linear Algebra Appl, 2008,428: 1551-1559.
  • 4Fang Maozhong. Bounds on eigenvalues of the Hadamard product and the Fan product of matrices[J]. Linear Algebra Appl, 2007, 425: 7-15.
  • 5Li Yaotang, Li Yanyan,Wang Ruiwu, Wang Yaqiang. Some new bounds on eigenvalues of theHadamard product and the Fan product of matrices [J]. Linear Algebra Appl, 2010, 432: 536-545.
  • 6Horn R A, Johnson C R. Matrix analysis[M]. New York: Cambridge University Press, 1985.
  • 7Berman A, Plemmons R J. Nonnegative matrix in the mathematical sciences[M]. New York: Aca-demic Press, 1979.
  • 8陈景良;陈向晖.特殊矩阵[M]北京:清华大学出版社,2000.
  • 9Horn R A,Johnson C R. Topic in Matrix Analysis[M].New York:cambridge University Press,1991.
  • 10Ljiljana Cvetkovic. H-matrix theory and eigenvalue localization[J].Numerical Algorithms,2006.229-245.

共引文献22

同被引文献14

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部