摘要
在原有小型谷物烘干机技术基础上,为满足生产需求,对其中的某些关键零部件进行设计与优化。利用三维软件Solid Works对谷物烘干机实体建模,并将关键零部件螺旋叶片与烘干滚筒导入ANSYS workbench软件中做有限元分析,根据其工作方式与受到载荷不同,对螺旋叶片做热力耦合分析,对烘干滚筒做静应力与模态分析。结果表明:(1)螺旋叶片受到的最大热应力与烘干滚筒受到的最大静应力分别为14.249 MPa、3.3815 MPa,均小于材料的屈服应力235 MPa;(2)螺旋叶片的温度传递较为均匀,能很好将热流量均分到筒体内壁,且最大热变形为0.0093 mm,变形量非常小,符合设计要求;(3)由于电机转速较低,只设定为8 r/min,烘干滚筒的固有振幅频率为2Hz左右,远低于1阶共振频率的13551 Hz,不会引发共振,达到使用要求。
In order to meet production needs,some key components were designed and optimized based on the original small grain dryer technology.The three-dimensional software SolidWorks was used to model the grain dryer solid body,and the key components spiral blade and drying drum were introduced into the ANSYS workbench software for finite element analysis. According to the working mode and the load,the thermal coupling analysis of the spiral blade was performed,and static stress and modal analysis of the drying drum was performed. The results show that:(1)the maximum thermal stress of the spiral blade and the maximum static stress of the drying drum was 14.249 MPa and 3.3815 MPa,respectively,both of which were less than the yield stress of 235 MPa of the material;(2)the temperature transfer of the spiral blade was relatively uniform,which could better distribute the heat flow to the inner wall of the drum,and the maximum thermal deformation was 0.009 3 mm,the deformation was very small, meeting the design requirements;(3)due to low motor speed,which was only set to 8 r/min,the inherent amplitude frequency of the drying drum was about 2 Hz,far lower than the first-order resonant frequency of 13 551 Hz,it won’t cause resonance and meets the requirements for use.
作者
鄢强
邓祥丰
宋慧瑾
陈代玉
吴明春
Yan Qiang;Deng Xiangfeng;Song Huijin;Chen Daiyu;Wu Mingchun(College of Mechanical Engineering,Chengdu University,Chengdu 610106,China)
出处
《包装与食品机械》
CAS
北大核心
2019年第5期41-45,67,共6页
Packaging and Food Machinery
基金
四川省教育厅青年科研重点项目(17ZA0094)