期刊文献+

一种新的纹理图像特征提取的方法 被引量:3

Research of fabric defect detection based on improved PCNN
下载PDF
导出
摘要 灰度图像的纹理反映了一个区域中像素灰度级及其局部变化的空间分布属性 ,用图像的局部统计特征能较好地刻画不同纹理的差异 .基于这种思想 ,本文中首次提出了一种基于 PCNN点火序列图的纹理图像特征提取的新方法 .通过对 PCNN的运行行为和基本特性的分析 ,指出 PCNN的点火时刻序列图不仅包含了局部图像的灰度分布信息 ,更重要的是还包含了图像中相邻像素之间的几何信息 ,这恰是纹理图像的个性特征所在 .最后给出了部分仿真实验的结果 。 Texture analysis is the emphasis and difficulty of researches in the fields such as computer vision, image understanding and pattern recognition , while the feature extraction of texture image is a basic research topic . The texture of gray scale image is a property that reflects the spatial distribution of the gray scale levels of image pixels in a region and their local variations. So the local statistical features of an image can characterize the differences of different textures. In view of this thought, a new method of feature extraction of texture images based on PCNN firing series image frame is proposed in this paper for the first time. After analysis of the running action and basic properties of PCNN, it is pointed out that PCNN firing series image frame contains not only information about the distribution of gray scale of local images, but also geometry information between adjacent pixels, which is more important and just the individual characteristics of texture images. The validity of this method is well verified by our experiments.
出处 《纺织高校基础科学学报》 CAS 2002年第3期189-194,共6页 Basic Sciences Journal of Textile Universities
基金 国防科技预研跨行业基金项目 (0 0 J1 .4.4.DZ0 1 0 6) 国家自然科学基金项目 (60 0 71 0 2 6) 图像信息处理与智能控制教育部重点实验室开放基金项目 (TKLJ0 0 0 5 )
关键词 纹理图像特征 提取 脉冲耦合神经网络 神经元点火 动态阈值 捕获 pulse coupled neural networks neuron firing dynamic threshold capture
  • 相关文献

参考文献1

  • 1容观澳.计算机图像处理[M].清华大学出版社,2000.269-288.

共引文献68

同被引文献25

  • 1宁晓菊.一种基于神经网络提取图像特征的图像检索方法[J].西安邮电学院学报,2006,11(3):88-91. 被引量:4
  • 2Eckhorn R, Reitboeck H J, Arndt Met al. Feature linking via synchronization among distributed assemblies: Simu- lation of results from cat cortex[J]. Neural Comput, 1990,2(3):293-307.
  • 3Eckhorn R, Frien A, Bauer R et al. High frequency oscillations in primary visual cortex of awake monkey [J]. NeuroRep.,1993,4(3):243-246.
  • 4John J L, Ritter D. Observation of periodic waves in a Pulse-coupled neural network[J]. Opt. Lett., 1993,18 (15):1253-1255.
  • 5Ranganath H S, Kuntimad G, and Johnson J L. Pulse coupled neural networks for image prooessing[A]. In: Proc. 1995 IEEE Southeast Con. [C], Raleigh NC, 1995,37-43.
  • 6Johnson J L, Ranganath H, Kuntimad Get al .Pulse coupled neural networks[J]. In: Omidvar 0 and Dayhoff J, Ed. Neural Networks and Pattern Recognition[C]. San Diego, CA: Academicpp, 1998,1-56.
  • 7KUNTMAD G, RANGANATH H S. Perfect image segmentation using pulse coupled neural networks[J]. IEEE Trans. Neural Networks, 1999,10(3):591-598.
  • 8容观澳.计算机图像处理[M].北京:清华大学出版社,2000..
  • 9ECKHORN R,REIBOECK H J,ARNDT M,et al.A neural networks for feature linking via synchronous activity:results from cat visual cortex and simulations[C].//In Models of Brain Function.Cambrige,UK,1989.
  • 10JOHNSON J L.Pulse-coupled neural nets:translation,rotation,scale distortion and intensity signal invariance for images[J].Applied Optics,1994,33 (26):6239-6253.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部