期刊文献+

浮区中热和溶质的毛细对流 被引量:5

Analysis of Thermo-Solutal-Capillary Convection in Floating Zone
下载PDF
导出
摘要 本文用数值模拟的方法研究了浮区中热毛细对流与溶质浓度毛细对流的耦合,分析了半导体晶体的浮区生长过程中杂质的影响.讨论了表面张力随浓度的增加而减少的典型情况.计算结果表明,在一定参数范围下,浓度Marangoni数对浮区中的流场和浓度场有明显的影响,对温度场的影响相对较小. The axisymmetrie model is used to study numerically the coupling processes of the ther-mocapillary and the solutalcapillary convection in a floating zone. One typical situation that isthe surface tension decreaces with the concentration are considered. The results show that thesolutal Marangoni number has obvious influences on the stream function and the solute distri-bution but has relatively slight effect on the temperature distribution.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 1992年第4期209-216,共8页 半导体学报(英文版)
关键词 浮区 晶体生长 毛细对流 溶质 Flow of Fluids Capillaries Heat Transfer Convection Mass Transfer Mathematical Techniques Numerical Analysis
  • 相关文献

参考文献2

  • 1闵乃本,晶体生长的物理基础,1981年
  • 2Chang C E,Int J Heat Mess Transfer,1976年,19卷,355页

同被引文献24

  • 1唐经文,周永利,张文杰,李友荣.环形池内具有自由表面的双层流体热毛细对流[J].热科学与技术,2012,11(1):20-26. 被引量:4
  • 2姜欢,段俐,康琦.矩形液池热毛细对流转捩途径研究[J].力学学报,2015,47(3):422-429. 被引量:2
  • 3Schwabe D. Marangoni effects in crystal growth melts Physico Chem Hydrodynam, 1981, 2:263-280.
  • 4Thorpe E J, Hutt PK, Soulsby R. The effects of horizontal gradients in thermohaline convection. J Fluid Mech, 1969, 38:375-400.
  • 5Chen CF, Briggs DG, Wirtz RA. Stability of thermal con- vection in a Salinity gradient due to lateral heating. Int J Heat Mass Trans, 1971, 14:57-65.
  • 6Chan CL, ChenWY, Chen CF. Secondary motion in con- vection layers generated by lateral heating of a solute gra- dient. J FluidMech, 2002, 455:2143-2159.
  • 7Bergman TL. Numerical simulation of double-diffusive Marangoni convection. Phys Fluids, 1986, 29:2103.
  • 8Chen CF, Chan CL. Stability of buoyancy and surface ten- sion driven convection in a horizontal double-diffusive fluid layer. Int J Heat Mass Trans, 2010, 53:1563-1569.
  • 9Zhan JM, Chen ZW, Li YS, et al. Three-dimensional double-diffusive Marangoni convection in a cubic cavity with horizontal, temperature and concentration gradients. Phys Rev E, 2010, 82:066305.
  • 10Chen ZW, Li YS, Zhan JM. Double-diffusive Marangoni convection in a rectangular cavity: onset of convection. Phys Fluids, 2010, 22:034106.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部