期刊文献+

金属配位超分子晶体的结构特性及在催化氧化裂解壳聚糖中的应用 被引量:2

The Crystal Structure of Metal Coordination Supermolecular and its using in Catalysis-Oxidation Cleaving Chitosan
下载PDF
导出
摘要 N,N'-二(2-氨丙基)草酰胺(H2apo)、硫氰酸根与铜?离子在适宜条件下可通过自组装方式形成配合物犤Cu2(apo)(NCS)2犦n,单晶解析结果表明这是一个新型的二维网状结构配位高分子。铜?由反式双三齿配体apo2-和硫氰酸根通过μ2-SCN的方式共同桥连。研究发现该固体在弱酸性溶液中、过氧化氢存在条件下对壳聚糖(一种氨基多糖)具有催化裂解作用。初步的分级分离结果表明降解寡糖分子量大部集中在3000~5000范围。 A novel two-dimensional network copper (11) complex bridged by N, N'-bis (2-aminopropyl) oxamide dianion (apo) and thiocyanate [Cu(apo) (NCS)(2)]n has been isolated and characterized by IR, electronic spectra, EPR and X-ray diffraction analysis. The crystal structure belongs to monoclinic, space group P2(1)/c with cell dimensions, a = 7.3131 (14), b = 10.22860(13), c = 11.199(2) Angstrom; beta = 106.63(2); V = 807.2(2) Angstrom(3), Z = 2, F(000) = 452, R-1 = 0.0502, wR(2) = 0.1057. The complex shows a pronounced two-dimensional character developing along the a axis. Within the layer the copper (11) ions are bridged by both apo(2-) and NCS-, the former behaving as a bis (tridentate) ligand in a trans conformation whereas the latter bridges the copper centers in asymmetric end-to-end fashion extending along the be plane to form an infinite network. In this layer, every apo(2-) links four neighbor apo(2-)s by hydrogen bonds. The complex could catalysis-oxidation cleaving chitosan as a matrix with H2O2 presented. This method can narrow the molecular weight distribution.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2003年第1期20-24,共5页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金资助项目(No.20061001) 国家高技术研究发展专项经费资助。
关键词 金属配位 超分子晶体 结构特性 催化氧化 裂解 壳聚糖 铜(Ⅱ)配合物 二维网状配位 晶体结构 壳聚糖降解 copper (II) complex two-dimensional network crystal structure cleaving chitosan
  • 相关文献

参考文献11

  • 1Robin R., Abrahams B. F., Batten S. R., Gable R. W.,Huskiness B. F., Lieu J. Supramolecular Architecture, ACS Publications, VCH: Weinheim, 1995, ch9.
  • 2Sanz J. L., Cervera B., Ruiz R., Bois C., Faus J., Lloret F.,Julve M. J. Chem. Soc., Dalton Trans., 1996, 1359.
  • 3Ribas J., Diaz C., Costa R., Tercero J., Solans X., Font-Bardia M., Stoeckli-Evans H. Inorg. Chem., 1998, 37,233.
  • 4Vicente R., Escuer A., Penalba E., Solans X., Font-Bardia M. Inorg. Chim. Acta, 1997, 255, 7.
  • 5Blake A. J., Champness N. R., Crew M., Hanton L. R.,Parsons S., Schroder M. J. Chem. Soc., Dalton Trans.,1998, 1533.
  • 6Jung O. S., Park S. H., Kim D. C., Kim K.M. Inorg.Chem., 1998, 37, 610.
  • 7YIN Xue-Qiong(尹学琼),LIN Qiang(林强),ZHANG Qi(张岐)et al Yingyong Huaxue(Chinese Journal of Applied Chemistry),2002,19(4),325.
  • 8YIN Xue-Qiong(尹学琼),ZHANG Qi(张岐),YU WenXia(于文霞)et al Wuji Huaxue Xuebao(Chinese Journal of Inorganic Chemistry),2002,18(1),87.
  • 9Ojima H., Yamada K. Nippon Kagaku Zasshi, 1968, 89,490.
  • 10Albano V. G., Castellari C., Fabretti A. C., Giusti A.Inorg. Chem. Acta, 1992, 191,213.

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部