期刊文献+

基于卷积神经网络的高分辨率雷达目标识别 被引量:9

High Resolution Radar Target Recognition Based on Convolution Neural Network
下载PDF
导出
摘要 提出一种基于卷积神经网络(Convolution Neural Network,CNN)的高分辨率雷达目标识别方法.首先针对小样本应用于深度CNN时训练过程中损失函数值收敛速度慢的问题,利用结合批归一化算法的改进CNN网络对高分辨距离像(High Resolution Range Profile,HRRP)进行自动特征提取;再利用支持向量机(Support Vector Machine,SVM)对距离像特征进行分类.使用军事车辆高保真电磁仿真数据对提出的方法进行验证,识别结果证明了该方法的有效性. A new method of high resolution radar target recognition based on Convolution Neural Network(CNN)was presented.To solve the problem of slow convergence of loss function values during the training process when small samples are applied to the deep CNN,High Resolution Range Profile(HRRP)features were firstly extracted by using the improved CNN combined with the Batch Normalization(BN)algorithm,and then classified by using a Support Vector Machine(SVM).The experimental results using high-fidelity electromagnetic simulation data of military vehicles validate the effectiveness of the proposed method.
作者 何松华 张润民 欧建平 张军 HE Songhua;ZHANG Runmin;OU Jianping;ZHANG Jun(College of Computer Science and Electronic Engineering,Hunan University,Changsha 410082,China;ATR Laboratory,National University of Defense Technology,Changsha 410073,China)
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第8期141-148,共8页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(61471370)~~
关键词 高分辨距离像 雷达目标识别 卷积神经网络 批归一化 支持向量机 High Resolution Range Profile(HRRP) radar target recognition Convolution Neural Network(CNN) Batch Normalization(BN) Support Vector Machine(SVM)
  • 相关文献

参考文献5

二级参考文献28

  • 1何松华.高距离分辨率毫米波雷达目标识别的理论与应用(博士论文)[M].长沙:国防科技大学,1993..
  • 2何松华,博士学位论文,1993年
  • 3尹雷.[D].南京:东南大学,2001.
  • 4汪杰.[D].南京:东南大学,2002.
  • 5Knott E F.Radar Cross Section[M].Dedham:Artech House,1985.
  • 6Fritch P C.Special Issue on Radar Reflectivity[J].Proc,IEEE,1965,53(8):54 -89.
  • 7Stone W R.Special Issue on Radar Cross Sections of Complex Objects[J].Proc.IEEE,1989,77(5):20 -24.
  • 8Xiang An,Zhiqing Lü,Wei Hong,Xiao Xing Yin,Tie Jun Cui.The application of PBSV-DDM in EM scattering analysis of electrically large 2-D objects[ J].Journal of Applied Science,2005,23(2):2255-2258.
  • 9安翔.计算电磁学中的网格生成与区域分解算法[D].南京:东南大学博士后研究报告,2004.
  • 10Antonini Puppin-Macedo.Finite Element and Domain Decomposition Methods for Acoustic Scattering Problems[D]:Colorado:Ph.D.Dissertation,University of Colorado at Boulder,1999.

共引文献102

同被引文献66

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部