期刊文献+

采用BP神经网络的智能抗干扰决策引擎研究 被引量:10

Intelligent Anti-jamming Decision Engine Based on BP Neural Network
下载PDF
导出
摘要 在认知抗干扰通信系统中,智能决策是其核心,根据干扰环境,对系统的干扰抑制方式、频谱资源分配、调制编码方式和功率调整信息进行最优决策。现有的抗干扰通信系统的智能决策多采用遗传算法、人工蜂群算法等,面对日益复杂的电磁环境,通常这些算法不具有对新干扰的泛化能力。BP神经网络算法简单、具有一定的容错能力和泛化能力,本文设计并分析了一种基于BP神经网络的抗干扰实时决策引擎模型,根据系统性能设计了输入输出数据的预处理方式和判别标准,阐述了决策实现步骤,分析了算法参数;通过系统性能仿真,验证了文中提出的实时决策引擎的强抗干扰性能。与采用遗传算法和人工蜂群算法的决策引擎相比,本文提出的决策引擎决策速度更快且具有泛化能力和容错能力。 Intelligent decision-making is the core of anti-jamming communication system,the optimal decision is made on the system’s jamming suppression mode,spectrum resource allocation,modulation and coding mode and power adjustment information according to the jamming environment.The existing intelligent decision-making in the anti-jamming communication system mostly adopts the genetic algorithm,artificial bee colony algorithm,etc.In the face of complex and changing electromagnetic environment,usually these algorithms do not have the fault tolerance capability for environment estimation parameters and the generalization ability for the new jamming.The BP neural network algorithm is simple,has certain fault tolerance and generalization ability.In this paper,a real-time anti-jamming decision engine model based on BP neural network is designed and analyzed.The pre-processing method and discriminant standard of input data are designed according to system performance.The decision-making steps and the algorithm parameters are analyzed.The system performance simulation proves that the decision engine proposed in this paper has strong anti-jamming performance.Compared with the decision engine using genetic algorithm or artificial bee colony algorithm,the decision engine proposed in this paper is faster and has generalization ability and fault tolerance.
作者 冉雨 程郁凡 陈大勇 王小青 Ran Yu;Cheng Yufan;Chen Dayong;Wang Xiaoqing(National Key Laboratory of Science and Technology on Communications of UESTC,Chengdu,Sichuan 611731,China;Naval Research Institute,Beijing 100161,China)
出处 《信号处理》 CSCD 北大核心 2019年第8期1350-1357,共8页 Journal of Signal Processing
基金 国家预研项目(3020103,9020302) 国家重点研发计划项目(2018YFC0807101) 通信抗干扰技术国家级重点实验室基金项目
关键词 认知抗干扰 决策引擎 BP神经网络 cognitive anti-jamming decision engine BP neural network
  • 相关文献

参考文献5

二级参考文献30

  • 1范伟,翟传润,战兴群.基于MATLAB的扩频通信系统仿真研究[J].微计算机信息,2006,22(07S):242-244. 被引量:34
  • 2郭彩丽,张天魁,曾志民,冯春燕.认知无线电关键技术及应用的研究现状[J].电信科学,2006,22(8):50-55. 被引量:33
  • 3ZENG Y H, LIANG Y C. Eigenvalue-Based Spectrum Sensing Algorithms for Cognitive Radio [ J ]. IEEE Trans. Veh. Technol. ,2009,57(6) :1784 - 1793.
  • 4ZENG Y H,LIANG Y C. Spectrum-sensing algorithms for cognitive radio based on statistical covariances [J]. IEEE Trans. Veh. Technol. ,2009,58 ( 4 ) : 1804 - 1815.
  • 5PERTTI HENTTU, SAMI AROMAA. Consecutive Mean Excision Algorithm [ C]//IEEE 7 Int Symp. on Spread- Spectrum Tech& Appl. Prague, Sept. 2- 5. 2002:51 - 517.
  • 6吕再兴 程郁凡.基于频域的盲干扰检测算法研究.现代军事通信,2011,:15-15.
  • 7VARTIAINEN J,LEHTOMAKI J J,SAARNISAARI H. Doubule-Threshold Based Narrowband Signal Extraction [ C]// Vehicular Technology Conference, 2005 IEEE 61st,2:1288 - 1292.
  • 8ROBERTS M L, TEMPLE M A, RAINES R A, et al. Communication waveform design using an adaptive spectrally modulated, spectrally encoded ( SMSE ) framework [ J ]. IEEE Journal of Selected Topics in Signal Processing,2007,1 ( 1 ) :203 - 213.
  • 9DILLARD G M,REUTER M,ZEIDLER J,et al. Cyclie Code Shift Keying:A Low Probability of Intercept Communication Technique [J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):786 -798.
  • 10李朝荣,郭宝录,乐洪宇.电子战飞机的发展动向与分析[J].舰船电子工程,2009,29(3):32-36. 被引量:7

共引文献55

同被引文献80

引证文献10

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部