期刊文献+

网络广告点击率预估的特征学习及技术研究进展 被引量:1

A survey on feature learning and technologies of online advertising click-through rate estimation
下载PDF
导出
摘要 大数据时代有效预估网络广告点击率,对企业精准营销和提高投资回报率具有至关重要的作用。对网络广告点击率预估的特征学习及技术研究进行了综述,从原始数据特点及解决方法、点击率预估的特征学习、点击率预估模型构建、评价指标选取等方面,分析了网络广告点击率预估的国内外研究现状。点击率预估可应用于互联网广告投放、推荐系统等多个领域,具有较高的研究价值。 How to effectively estimate the click-through rate(CTR)of online advertising in the era of big data plays a crucial role in the accurate marketing of enterprises and the improvement of return on investment(ROI).It also helps improve user experience in real online advertising scenarios.This paper reviews the feature learning and technologies of online advertising click-through rate estimation.Specifically,in the four aspects of the abundant historical data characteristics and their corresponding solutions,feature engineering,the construction of click-rate estimation model,and the selection of evaluation indicators,the current state of domestic and international research of online advertising click-through rate estimation is analyzed.It shows that the click-through rate estimation can be applied to many areas such as internet advertising and recommendation systems,and has high research value.However,the problem of conversion rate estimation in online advertising is different from that of click-through rate estimation,and further researches are needed.
作者 刘华玲 恽文婧 林蓓 丁宇杰 LIU Hualing;YUN Wenjing;LIN Bei;DING Yujie(School of Statistics and Information,Shanghai University of International Business and Economics,Shanghai 201620,China;School of Information Management and Engineering,Shanghai University of Finance and Economics,Shanghai 200433,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2019年第5期565-573,共9页 Journal of Zhejiang University(Science Edition)
基金 上海哲学社会科学规划课题项目(2018BJB023) 国家社会科学重大课题(16ZDA055)
关键词 点击率预估 特征学习 网络广告 click rate estimation feature learning online advertising
  • 相关文献

参考文献11

二级参考文献93

  • 1Chatterjee P, Hoffman DL, Novak TP. Modeling the clickstream: Implications for Web-based advertising efforts. Marketing Science, 2003,22(4):520-541. [doi: 10.1287/mksc.22.4.520.24906].
  • 2Wang C, Zhang P, Choi R, D'Eredita M. Understanding consumers' attitude toward advertising. In: Proc. of the 8th Americas Conf. on Information System. 2002. 1143-1148.
  • 3Ribeiro-Neto B, Cristo M, Golgher PB, Moura ES. Impedance coupling in content-targeted advertising. In: Proe. of the SIGIR 2605. New York: ACM Press, 2005. 496-503. [doi: 10.1145/1076034.1076119].
  • 4Lacerda A, Cristo M, Goncalves MA, Fan WG, Ziviani N, Ribeiro-Neto B. Learning to advertise. In: Proc. of the SIGIR 2006. New York: ACM Press, 2006. 549-556. [doi: 10.1145/1148170.1148265].
  • 5Broder AZ, Fontoura M, Josifovski V, Riedel L. A semantic approach to contextual advertising. In: Proc. of the SIGIR. 2007. 559-566. [doi: 10.1145/1277741.1277837].
  • 6Chakrabarti D, Agarwal D, Josifovski V. Contextual advertising by combining relevance with click feedback. In: Proc. of the 17th Int'l Con1: on World Wide Web (WWW 2008). Beijing: ACM Press, 2008.417-426. [doi: 10.1145/1367497.1367554].
  • 7Yih W, Goodman J, Carvalho VR. Finding advertising keywords on Web pages. In: Proc. of the 15th Int'l Conf. on World Wide Web (WWW 2006). New York: ACM Press, 2006. 213-222. [doi: 10.1145/1135777.1135813].
  • 8Belkin N, Croft B. Information filtering and information retrieval. Communications of the ACM, 1992,35(12):29-37. [doi: 10.1145/138859.138861].
  • 9Balabanovic M, Shoham Y. Fab: Content-based collaborative recommendation. Communications of the ACM, 1997,40(3):66-72. [doi: 10.1145/245108.245124].
  • 10Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In: Proc. of the CSCW'94, 1994. [doi: 10.1145/192844.192905].

共引文献111

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部