期刊文献+

基于探针内嵌超分子囊泡的半胱氨酸荧光传感

Fluorescent sensing of cysteine based on probe-interbedded supramolecular vesicles
下载PDF
导出
摘要 针对高结构相似度同系物中特定化合物的检测分析流程复杂的问题,采用模块化组装的策略制备了一类嵌含光学分子探针的超分子囊泡,并在此基础上建立了一种集分离与检测功能于一体的新型荧光传感模式.将生物硫醇的广普性探针四氟对苯二甲腈嵌入由四(戊硫代)四硫富瓦烯与十二烷基-β-D-麦芽糖苷构成的超分子囊泡膜层后,囊泡对半胱氨酸展现出高选择性、宽动态范围的荧光响应,实现了半胱氨酸的便捷、灵敏检测.由四烃基四硫富瓦烯和表面活性剂共组装形成的空白囊泡制备简单,光谱可见光区背景吸收低,可作为构建此类荧光传感体系的通用模板,为这种新型传感模式的推广提供有力的支撑. It is usually necessary to involve a complex and time-consuming analytical procedure in detecting target species with high selectivity over its structurally-similar homologues.In order to solve the problem,probe-interbedded supramolecular vesicles(PISVs)had been fabricated via modular self-assembly and employed to develop a new fluorescent sensing mode possessing both separation and quantitation functions.As a general fluorescent probe for biothiols,tetrafluoroterephthalonitrile(4 F-2 CN)was found to show highly selective and wide-dynamic-range response for cysteine(Cys)over homocysteine(Hcy),penicillamine(Pen)and glutathione(GSH),when interbedded in the supramolecular vesicles assembled from tetrakis(pentylthio)tetrathiafulvalene(TPT-TTF)and ndodecyl-β-D-maltopyranoside(DDM),so that straightforward and sensitive fluorescent sensing of Cys was established.The noninterbedded vesicles formed by TPT-TTF and common amphiphiles were facilely prepared and displayed a low spectral background in visual region,offering ageneral and efficient vesicle template for developing other PISV-based sensing systems.
作者 王月敏 李顺华 WANG Yuemin;LI Shunhua(Key Laboratory of Spectrochemical Analysis&Instrumentation,Ministry of Education,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第5期637-642,共6页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(21775129,21475111)
关键词 囊泡 荧光探针 分子自组装 半胱氨酸 vesicles fluorescent probes molecular self-assembly cysteine
  • 相关文献

参考文献3

二级参考文献12

  • 1Nelson DL, Cox MM. Lehninger principles of Biochemistry, Fourth Edition, 2004, W. H. Freeman Company.
  • 2Voet D & Voet JG. Biochemistry, Fourth Edition,2010, John Wiley & Sons, Inc.
  • 3http://web.nmsu.edu/~snsm/classes/chem435/Labl2/.
  • 4Clement GE, Hartz TP. Determination of the microscopic ionization constant of cysteine. J Chem Educ,1971,48: 395-397.
  • 5Li NC,Manning RA. Some metal complexes of sul-fur-containing amino acids. J Am Chem Soc, 1955,77: 5225-5228.
  • 6Stricks W, Kolthoff IM. Reactions between mercuric mercury and cysteine and glutathione, apparent dissociation constants, heats and entropies of formation of various forms of mercuric mercapto-cysteine and -gluta-thione. J Am Chem Soc, 1953, 75: 5673-5681.
  • 7Tanacka N, Kolthoff IM,StricksW. Iron-cysteinate complexes. J Am Chem Soc, 1955,77: 1996-2004.
  • 8Marino SM, Gladyshev VN. Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation. J Mol Biol, 2010, 395: 844-859.
  • 9尹伶灵,陈蓁蓁,佟丽丽,徐克花,唐波.硫醇类荧光探针研究进展[J].分析化学,2009,37(7):1073-1081. 被引量:11
  • 10苏文崎,童杰,杨秉勤.新型罗丹明类Ca^(2+)荧光探针的合成及光谱性能研究[J].有机化学,2013,33(5):982-987. 被引量:9

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部