期刊文献+

基于校园一卡通的数据挖掘应用研究

Research on Data Mining Application Based on Campus Card
下载PDF
导出
摘要 校园一卡通系统储存了大量的数据信息,涉及学生校园生活与学习的各个方面,其中的学生消费数据最为稳定和完整。对传统FCM算法进行改进,得到改进后的基于密度权重的模糊C均值算法(DWFCM),并使用这两种方法分别对预处理后的一卡通数据进行挖掘分析,得到的结果表明DWFCM算法有更好的聚类效果,可以为学校困难学生认定和资助提供支撑数据,从而提高资助的精准性。 Campus card system stores a large amount of data and information,involving all aspects of students'campus life and learning,among which students'consumption data is the most stable and complete.This paper improves the traditional FCM algorithm and obtains the improved fuzzy C-means algorithm based on density weight(DWFCM).Using these two methods to mine and analyze the pre-processed card data,the results show that the DWFCM algorithm has better clustering effect.It can provide assistant supporting data for the identification and funding of school students with difficulties,so as to improve the accuracy of funding.
作者 钮永莉 冯胜安 贾红雯 Niu Yong-li;FENG Sheng-an;JIA Hong-wen(Department of Information Engineering,Chuzhou Vocational and Technical College,ChuZhou 239000,China)
出处 《信阳农林学院学报》 2019年第3期89-92,共4页 Journal of Xinyang Agriculture and Forestry University
基金 滁州职业技术学院校级科研重点项目(YJZ-2018-19) 2017年院级教研项目(2017zlgc044)
关键词 一卡通数据 FCM算法 DWFCM算法 密度权重 card data FCM algorithm DWFCM algorithm density weight
  • 相关文献

参考文献5

二级参考文献25

  • 1朱涛.高校校园一卡通系统的应用与维护研究[J].佳木斯教育学院学报,2012(3):118-118. 被引量:8
  • 2Radke R], Andra S, Al-Kofahi 0, et al. Image Change Detection Algorithms: a Systematic Survey[J]. IEEE Transcations on Image Processing, 2005, 14(3): 294-307.
  • 3FranssonJ E S, Walter F, Blennow K, et al. Detection of Storm-damaged Forested Areas Using Airborne CARABA5-n VHF SAR Image Data[J]. IEEE Transcations on Geoscience and Remote Sensing, 2002, 40 (l 0): 2170-2175.
  • 4BezdekJ. Pattern Recognition with Fuzzy Objective Function Algorithmsj M] . New York: Plenum, 1981.
  • 5Krinidis S, Chatzis V. A Robust Fuzzy Local Information c-rneans Clustering Algorithm[J]. IEEE Transcations on Image Processing, 2010, 19(5): 1328-1337.
  • 6Otsu N. A Threshold Selection Method from Gray Level Histograms[J]. IEEE Transcations on Systems, Man and Cybernetics, 1979, 9(1): 62-66.
  • 7Shi v, Eberhart R. A Modified Particle Swarm Optimizer[CJ / /Proceeding of IEEE World Congress on Computational Intelligence. Piscataway: IEEE, 1998: 69-73.
  • 8Zhu Zexuan, ZhouJ iarui ,Ji Zhen, et al. DNA Sequence Compression Using Adaptive Particle Swarm Optimization?based Memetic Algorithrnj I}. IEEE Transcations on Evolutionary Computation, 2011, 15( 5): 643-658.
  • 9Gong Yuejiao, ZhangJ un , Liu Ou, et al. Optimizing the Vehicle Routing Problem with Time Windows: a Discrete Particle Swarm Optimization Approach[J]. IEEE Transcations on Systems, Man and Cybernetics: Part C, 2012, 42 (2): 254-267.
  • 10Liu Yi, Mu Caihong, Kou Weidong, et al. A Simple Multi-population Evolutionary Algorithm Using PSO Strategy for Constrained Engineeing Design Optimization[J]. InternationalJournal of Digital Content Technology and Its Applications, 2012, 6(13): 532-541.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部