期刊文献+

基于不同采样率的短航程油耗估计 被引量:1

Estimation of Short-voyage Fuel Consumption Based on Different Sampling Rates
下载PDF
导出
摘要 针对多因素影响下的短航程油耗呈现双峰分布,提出了使用高斯混合聚类(Gaussian mixture model,GMM)和随机森林(random forest,RF)相结合的方法对短航程油耗进行估计。该算法先使用GMM对短航程油耗数据聚类,得到两个不同形状的聚类簇。以不同的采样率对两个聚类簇进行采样,构造子数据集,并对每个子集使用回归树进行训练。将CART回归树并行得到RF用于短航程油耗估计。在同一机型和航线,不同的航班数据上进行对比实验,结果验证了所提算法的有效性。 In view of the bimodal distribution of short-voyage fuel consumption under the influence of multiple factors,a method combining Gaussian mixture clustering(GMM)and random forest(RF)were proposed to estimate the short-voyage fuel consumption.GMM was used to cluster short-voyage fuel consumption data to obtain clusters of two different shapes.The two clusters were sampled at different sampling rates,the sample subset was constructed,and the regression tree was used for each subset.The classification and regression tree(CART)was used in parallel to obtain random forest for short-voyage fuel consumption estimation.The comparison experiments were carried out on the same model and route,and different flight data.The results show the effectiveness of the proposed algorithm.
作者 陈静杰 崔金成 CHEN Jing-jie;CUI Jin-cheng(College of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China)
出处 《科学技术与工程》 北大核心 2019年第24期254-259,共6页 Science Technology and Engineering
基金 中美绿色航线项目(GH201661279) 国家科技支撑计划(2012BAC20B0304)资助
关键词 短航程油耗 高斯混合聚类 采样率 随机森林 short-voyage fuel consumption Gaussian mixture clustering sampling rate random forest
  • 相关文献

参考文献6

二级参考文献133

  • 1张曦.一元线性回归分析在工程技术经济领域中的应用[J].建筑经济,2009,30(S1):253-256. 被引量:8
  • 2周亚同,张太镒,刘海员.基于核的机器学习方法及其在多用户检测中的应用[J].通信学报,2005,26(7):96-108. 被引量:3
  • 3程荣辉,古远兴,黄红超,李美金,黄顺洲.民用航空发动机核心机技术发展研究[J].燃气涡轮试验与研究,2007,20(1):1-7. 被引量:9
  • 4Sun Jianguo. Advanced muhivariable control systems of aeroengines.北京:北京航空航天大学出版社,2005:28-40.
  • 5瞿红春,林兆福.民用航空燃气涡轮发动机原理.北京:兵器工业出版社,2006:6-9.
  • 6杨晓军,赵洪利,曲春刚,等.民用航空发动机控制系统,中国民航大学,2011:40-79.
  • 7Ma Shi-dong, Nan Liang. Researches on modeling and simulation of turbo-shaft engine and main rotor system. WRI World Congr Sci Inf Eng,2009 : 187-191.
  • 8骆广琦,桑增产,王如根,等.航空燃气涡轮发动机数值仿真.北京:国防工业出版社,2007:101-147.
  • 9Williams C K I. Prediction with Ganssian processes:From linear regression to linear prediction and beyond[ M]. M. I. Jordan. l.eaming in Graphical Models. [ s. 1. ] : Netherlands: Springer Science & Business Media, 1998:599-621.
  • 10Williams C K I, Barber D. Bayesian classification with Ganssian processes[J]. Pattern Analysis and Machine Intel- ligence, IEEE Transactions on, 1998,20 (12) : 1342-1351.

共引文献44

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部