期刊文献+

基于GARCH模型和BP神经网络模型的股票价格预测实证分析 被引量:14

Empirical analysis of stock price forecast based on GARCH model and BP neural network model
下载PDF
导出
摘要 采用GARCH模型和BP神经网络模型,利用上海A股30支股票(6类,每类各5支)2015年6月29日至2017年6月30日的日收盘价,分别进行短期(2017年7月3日至7日)、中期(2017年8月14日至18日)和长期(2017年9月25日至29日)预测.结果表明:在短期预测中,无论是否考虑当日价格波动对预测结果的影响,2个模型的每日与一周总体预测效果的差异均不具有统计学意义(P>0.05);在中期预测中,无论是否考虑当日价格波动对预测结果的影响,BP神经网络模型的每日与一周总体预测效果均优于GARCH模型,且总体差异具有高度统计学意义(P<0.01),不考虑当日价格波动时每日预测效果的差异具有统计学意义(0.01<P<0.05),考虑价格波动时每日预测中有3日预测效果的差异不具有统计学意义(P>0.05),有2日预测效果的差异具有统计学意义(0.01<P<0.05);在长期预测中,无论是否考虑当日价格波动对预测结果的影响,BP神经网络模型的每日与一周总体预测效果均优于GARCH模型,且总体差异具有高度统计学意义(P<0.01),每日预测效果的差异不具有统计学意义(P>0.05);随着预测周期的延后,预测误差逐渐增大. The GARCH model and the BP neural network model are used to make short-term(July 3 to 7,2017),mediumterm(August 14 to 18,2017)and long-term(September 25 to 29,2017)forecasts using the daily closing prices of 30 stocks(6 categories,5 each)of Shanghai A shares from June 29,2015 to June 30,2017.The results show that in the short-term forecast,whether or not considering the impact of daily price fluctuations on the forecasting results,the differences of the two models on the daily and weekly overall forecasts are not statistically significant(P>0.05).In the medium-term forecast,whether or not considering the impact of daily price fluctuations on the forecasting results,the daily and weekly overall forecasts of the BP neural network model are better than those of the GARCH model,and the difference of overall forecast is highly statistically significant(P<0.01).The differences of daily forecasts effect are statistically significant when the price fluctuations of the day are not considered(0.01<P<0.05),and when price fluctuations are considered,the differences on 3 days forecasts of the daily forecasts are not statistically significant(P>0.05)while the differences on the other 2 days forecasts are statistically significant(0.01<P<0.05).In the long-term forecast,whether or not considering the impact of daily price fluctuations on the forecasting results,the daily and weekly overall forecasting effects of the BP neural network model are better than those of the GARCH model.The difference of overall forecast is highly statistically significant(P<0.01),and the differences of daily forecasts are not statistically significant(P>0.05).Besides,the forecasting error gradually increases with the delay of the forecasting period.
作者 崔文喆 李宝毅 于德胜 CUI Wenzhe;LI Baoyi;YU Desheng(College of Mathematical Science,Tianjin Normal University,Tianjin 300387,China)
出处 《天津师范大学学报(自然科学版)》 CAS 北大核心 2019年第5期30-34,共5页 Journal of Tianjin Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11271046 11671040) 天津师范大学博士基金资助项目(52XB1414)
关键词 股价预测 收盘价 GARCH模型 BP神经网络模型 MATLAB stock price forecast closing price GARCH model BP neural network model MATLAB
  • 相关文献

参考文献6

二级参考文献39

  • 1于志军,杨善林.基于误差校正的GARCH股票价格预测模型[J].中国管理科学,2013,21(S1):341-345. 被引量:15
  • 2韩文蕾,李军.应用概率神经网络预测股市的方向变化[J].桂林电子工业学院学报,2005,25(1):71-73. 被引量:3
  • 3戴晓枫,肖庆宪.时间序列分析方法及人民币汇率预测的应用研究[J].上海理工大学学报,2005,27(4):341-344. 被引量:46
  • 4杨叔子,吴雅.时间序列分析在工程中的应用[M].武汉:华中理工大学出版社,1992:21-24.
  • 5Schekman J A, Lebaran B. Nonlinear dynamics and stock returns[J]. Journal of Business, 1989, 6(2): 311-317.
  • 6Ebert R C, Dobbins R W.Neural network Pctools[M]. [S. I.]: Academic Press, 1990.
  • 7楼顺天,施阳.基于Matlab的系统与设计-神经网络[M].西安:西安电子科技大学出版社,2000.
  • 8李婷婷.基于大数集模糊BP神经网络的金融股票市场的预测[J].科技信息,2008(33):66 - 67.
  • 9刘琳,谢怀军.基于BP神经网络的股票短期预测应用研究[D].北京对外经济贸易大学,2008.
  • 10杨德平,刘喜华,孙海涛.经济预测方法及MATLAB实现[M].北京:机械工业出版社,2012.

共引文献70

同被引文献122

引证文献14

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部