摘要
本研究以云南省景洪市机载激光雷达飞行范围内的热带橡胶林为研究对象,基于LiDAR和Landsat 8 OLI数据,利用机载LiDAR点云数据提取地面LAI,借助地统计学中的半方差函数,对叶面积指数各原始波段光谱饱和特性进行分析。结果表明:近红外波段的反射率随着叶面积指数的增大而增大进而达到饱和,其余波段反射率随着叶面积指数的增大而减小进而达到饱和;在可见光范围内叶面积指数饱和值随着波长的增加而增加;在近红外和短波红外波段叶面积指数饱和值随着波长的增加而减小,结果虽然呈现出一定的规律性,但是差异并不是很明显。Landsat 8 OLI的1~7波段的饱和值分别为5.08、5.19、5.22、5.42、7.51、5.62、5.62,最大值为近红外波段,饱和值为7.51,最小值为海岸波段,饱和值为5.08,除近红外波段饱和值较大之外,其余波段的饱和值均介于5~6之间。
This study uses the airborne LiDAR flight range of Jinghong City in Yunnan Province as the experimental area, and the tropical rubber forest as the research object. Landsat 8 OLI as the main source of information for terrestrial satellite imagery. Based on the early extraction of the ground LAI using airborne LiDAR point cloud data, the spectral saturation characteristics of the leaf area index were analyzed by means of the semivariogram function in geostatistics. The results show that the reflectance change of the near-infrared band increases with the increase of the leaf area index and then saturates. The reflectance of the remaining bands decreases with the increase of the leaf area index and then saturates;Leaf area index saturation increases in the visible range as the wavelength increases;the leaf area index saturation value decreases in the near-infrared and short-wave infrared bands with increasing wavelength. Some regularity has been summarized, but the difference is not obvious;The saturation values of the 1-7 band of Landsat 8 OLI are 5.08, 5.19, 5.22, 5.42, 7.51, 5.62, 5.62, the maximum value is near-infrared band, and the saturation value is 7.51. The minimum value is coastal band, the saturation value is 5.08, except for the large saturation value of the near-infrared band, the saturation values of the other bands are between 5-6.
作者
罗洪斌
舒清态
王强
王冬玲
字李
谢福明
Luo Hongbin;Shu Qingtai;Wang Qiang;Wang Dongling;Zi Li;Xie Fuming(College of Forestry,Southwest Forestry University,Kunming Yunnan 650233,China)
出处
《西南林业大学学报(自然科学)》
CAS
北大核心
2019年第6期123-129,共7页
Journal of Southwest Forestry University:Natural Sciences
基金
国家自然科学基金项目(31860205,31460194)资助
云南“唐守正”院士工作站项目资助