2DAVIES S, MOORE A. Bayesian networks for lossless dataset compression[C]//Proceeding of International Con- ference Knowledge Discovery and Data Mining. San Diego: ACM Press, 2013:387-391.
3MERETAKIS D, WUTHRICH B. Extending naive bayes classifiers using long item sets[C]//Proceeding of Interna- tional Conference Knowledge Discovery and Data Mining. San Diego:ACM Press, 2013:165-174.
4ESPOSITO F, MALERBA D, SEMERARO G, et al. A comparative analysis of methods for pruning decision trees [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,19 (5): 476-491.
5LAM S L Y, LEE D L. Feature reduction for neural network based text categorization[C]//Digital Symposium Col- lection of 6th International Conference on Database System for Advanced Application. ES. 1. -: IEEE Press, 2015: 1121-1130.
6CESTNIK B, BRATKO I. On estimating probabilities in tree pruning, machine learning.. EWSL-91 [C]//Kodratoff Lecture Notes in Artificial Intelligence. Berlin.. Springer, 2015 : 138-150.
7ANDROUTSOPOULOS G, PALIOURAS V, KARKALETSIS G, et al. Learning to filter spare e-mail.. A compari- son of a naive Bayesian and a memory based approach[C] // Proceedings of 4th European Conference on Principles and Practice of Knowledge Discovery in Databases. London=Jerry Press, 2000: 1-13.
8RASTOGI R, SHIM K. Public: A decision tree that integrates building and pruning[C]//Proceeding of 24th Inter- national Conference on Very Large Data Bases. New York: [s. n. ],2014:404-415.