期刊文献+

记忆驱动的空时相关滤波跟踪算法

Memory-driven spatial-temporal correlation filter for object tracking
下载PDF
导出
摘要 为解决目标跟踪中目标形变、遮挡等因素导致目标外观大幅度变化的问题,提出了记忆驱动的空时相关滤波跟踪算法。首先使用交叉熵公式度量前、后两帧模型的差异,以确定样本的置信度;然后通过置信度储存跟踪目标的外观记忆,并使用外观记忆对模型做时间上的约束,以增加跟踪模型的抗干扰性。基于公开数据集OTB2015进行算法性能测试,结果显示,所提出的目标跟踪算法的跟踪精度和跟踪成功率皆有所提升,尤其是对目标遮挡、形变类视频的跟踪效果提升显著。 In order to address the problem of object tracking where the target undergoes significant appearance variation due to deformation or occluded,a memory-driven spatial-temporal correlation filter for object tracking was proposed.Cross entropy formula was utilized to measure the difference between previsous model and current model for determining the confidence coefficient of sample in each frame.This algorithm stored target appearance memory by cofidence coefficient.A temporal regularization term composed of target appearance memory was applied to the original model for anti-interference performance.Public dataset OTB2015 was used to test the algorithm.Experimental results show that the proposed algorithm has leading performance on distance precision and success rate,especially in the attributes of occlusion and deformation.
作者 孙浩 韩立新 徐国夏 SUN Hao;HAN Lixin;XU Guoxia(College of Computer and Informaion,Hohai University,Nanjing 211100,China)
出处 《中国科技论文》 CAS 北大核心 2019年第7期711-717,共7页 China Sciencepaper
关键词 图像处理 目标跟踪 相关滤波 空时约束 外观记忆 image processing object tracking correlation filter spatial-temporal regularization appearance memory
  • 相关文献

参考文献2

二级参考文献10

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部