期刊文献+

基于专家信任的协同过滤推荐算法改进研究 被引量:12

An improved collaborative filtering recommendation algorithm based on expert trust
下载PDF
导出
摘要 针对目前协同过滤推荐算法存在的冷启动、数据稀疏、可扩展性不高以及未考虑到不同社区簇之间可能存在相关性导致的推荐准确度低的问题,提出了一种在考虑同社区簇内专家信任基础上结合不同社区簇专家信任的推荐算法。在改进相似度计算时,改进算法不仅结合了Jaccard相关系数、用户的平均评分因子以及加权处理的Pearson相关系数,还结合了用来惩罚热门物品权重的流行度。在改进评分预测时,改进算法在引入了传统聚类推荐算法中的同社区簇专家信任后,还引入了不同社区簇专家信任。实验在MovieLens数据集上进行,实验结果表明,改进算法不仅缓解了冷启动和数据稀疏等问题,还显著提高了推荐准确度。 Aiming at the problems of cold start,sparse data,low scalability and low recommendation accuracy caused by insufficient consideration of the correlation between different community clusters,we propose a recommendation algorithm based on the trust of experts in the same community cluster and the trust of experts in different community clusters.In improving the similarity calculation,the improved algorithm not only combines Jaccard correlation coefficient,average score factor of users and Pearson correlation coefficient of weighted processing,but also combines the popularity used to punish the proportion of hot items.When improving the score prediction,the improved algorithm introduces the trust of experts in the same community cluster in the traditional clustering recommendation algorithm,and also introduces the trust of experts in different community clusters.Experiments on the MovieLens dataset show that the improved algorithm not only alleviates the problems of cold start and data sparseness,but also significantly improves recommendation accuracy.
作者 刘国丽 白晓霞 廉孟杰 张斌 LIU Guo-li;BAI Xiao-xia;LIAN Meng-jie;ZHANG Bin(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China)
出处 《计算机工程与科学》 CSCD 北大核心 2019年第10期1846-1853,共8页 Computer Engineering & Science
基金 国家自然科学基金(61702157) 河北省科技计划项目(17210305D)
关键词 协同过滤推荐 专家信任 相似度 推荐精度 collaborative filtering recommendation expert trust similarity recommendation accuracy
  • 相关文献

参考文献8

二级参考文献71

  • 1邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 2袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:153
  • 3Koren Y, Bell R. Advances in collaborative filtering [ EB/OL ]. [ 2011 - 09 - 26]. http ://research. yahoo, com/pub/3503.
  • 4Liu Guanfeng, Wang Yan, Orgun M. Trust inference in complex trust-oriented social networks [ C ]//Proceedings of International Conference on Computational Science and Engineering, 2009:996 - 1001.
  • 5Goldbaum D. Follow the leader: Simulations on a dynamic social network[ EB/OL]. [ 2011 - 09 - 26 ]. http://www, business. uts. edu. au/finance/research/wpapers/wp155, pdf.
  • 6Golbeck J A. Computing and applying trust in Web-based social networks[ EB/OL]. [ 2011 - 09 - 26 ]. http://drum, lib. umd. edu/bitstream/1903/2384/1/umi-umd-22d4, pdf.
  • 7Ziegler C N, Golbeck J. Investigating interactions of trust and interest similarity [ J ]. Decision Support Systems, 2007,43 (2) :460 - 475.
  • 8Massa P, Avesani P. Trust-aware recommender systems [ C]//Proceedings of the 2007 ACM Conference on Recommender Systems, New York : ACM,2007 : 17 - 24.
  • 9Donovan J O, Smyth B. Trust in recommender system [ C]//Proceedings of the 10th International Conference on Intelligent User Interfaces, New York: ACM, 2005:167 - 174.
  • 10Donovan J O, Smyth B. Eliciting trust values from recommendation errors [ C] //Proceedings of the 18th International Florid Artificial Intelligence Research Society Conference, Clearwater Beach:AAAI Press, 2005:289 - 294.

共引文献83

同被引文献113

引证文献12

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部