期刊文献+

基于LMS-PNN算法在心音识别与预测中的应用 被引量:3

Application of LMS-PNN Algorithm in Heart Sound Recognition and Prediction
下载PDF
导出
摘要 传统的概率神经网络(Probability neural network,PNN)具有很强的容错性、学习过程简单、训练速度快等特点。为提高传统PNN在心音分类方面的性能,利用最小均方(Least mean square,LMS)方法对其进行优化,进而提高心音分类与预测的准确性。LMS PNN算法对心音的信号运用窗函数进行分帧,利用双门限法确定数据IS的值,运用LMS方法对相应的参数进行调试,并将去噪后的数据以mat格式保存,提取出各个心音的短时自相关系数以及短时功率谱密度,并运用PNN,抽取40 000个样本数据进行训练,并对各心音进行等级划分与预测。从PNN的模式层输入训练数据后,由实验数据验证可知,LMS PNN算法的预测准确率可达96%以上。 Traditional probability neural network(PNN)has strong fault tolerance,simple learning process and fast training speed.To improve the performance of the traditional PNN in heart sound classification,we adopt least mean square(LMS)method to implement the optimization,thereby increasing the accuracy of heart sound classification and prediction.The LMS-PNN algorithm frames the heart sound signal using the window function,uses the double threshold method to determine the value of the data,employs the LMS algorithm to debug the corresponding parameters,and saves the denoised data in the format of mat file.It extracts the short-time autocorrelation coefficients and short-time power spectral densities of each heart sound,and uses PNN to extract 40 000 sample data for training.Each heart sound is graded and predicted.After inputting the training data from the mode layer of the PNN algorithm,experimental data verification shows that the prediction accuracy of LMS-PNN can reach more than 96%.
作者 周克良 王佳佳 Zhou Keliang;Wang Jiajia(School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou,341000,China)
出处 《数据采集与处理》 CSCD 北大核心 2019年第5期831-836,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61363011)资助项目 江西省自然科学基金(20151BAB207024)资助项目
关键词 心音 最小均方(LMS) 短时自相关系数 短时功率谱密度 概率神经网络(PNN) heart sound least mean square(LMS) short-time autocorrelation coefficient short-time power spectral density probability neural network(PNN)
  • 相关文献

参考文献6

二级参考文献37

  • 1姬水旺,姬旺田.支持向量机训练算法的实验比较[J].计算机应用研究,2004,21(11):18-20. 被引量:5
  • 2周静,杨永明,何为.心音信号的分析及其特征提取方法的研究[J].中国生物医学工程学报,2005,24(6):685-689. 被引量:40
  • 3张孝桂,何为,周静,李杰,石小波.基于嵌入式系统的便携式心音分析仪的研究[J].仪器仪表学报,2007,28(2):303-307. 被引量:14
  • 4罗建仲 罗琳.“心脏听诊”[M].人民卫生出版社,1980..
  • 5Abdelghani D,Fethi BR,Short-time Fourier Transform Analysis of The Phonocardiogram Signal[J],Electronics,Circuits and Systems,2000.ICECS 2000.The 7th IEEE International Conference on,2000,2:844-847.
  • 6Asir B El,Khadra L,Al-Abbasi AH,et al,Time-frequency Analysis of Heart Sounds[J],1996 IEEE TENCON.Digital Signal Processing Applications,1996,2:553-558.
  • 7Liang Hui-Ying,Sakari L,Iiro H.A Heart Sound Segmentation Algorithm Using Wavelet Decomposition and Reconstruction[C],Proceeding-19th International Conference IEEE/EMBS,Chicago,USA:IEEE,1997,1630-1633.
  • 8Haghighi-Mood A,Torry JN,Application of Advanced Signal Processing Techniques In Analysis of Heart sound[C],Signal Processing in Cardiography,London,UK:IEE,1995.8/1-8/5.
  • 9张德丰,等.MATLAB神经网络应用设计[M].北京:机械工业出版社,2011.
  • 10韦哲,李战明,程自峰,李向伟,张国全.基于LabVIEW8.2的心音信号检测与分析系统的研究[J].医疗卫生装备,2008,29(7):7-9. 被引量:7

共引文献60

同被引文献24

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部