期刊文献+

基于红外热成像与YOLOv3的夜间目标识别方法 被引量:9

Nighttime Target Recognition Method Based on Infrared Thermal Imaging and YOLOv3
下载PDF
导出
摘要 红外热成像图像反应物体温度信息,受环境条件影响较少,对于特定条件下的夜间安防监控、行车辅助、航运、军事侦查等方面具有很强应用价值。近年来使用人工智能对图像中目标检测与识别技术发展突飞猛进,广泛应用于各个领域。本文提出了一种结合红外热成像图像处理技术与人工智能目标识别技术的夜间目标识别方法。实时采集热成像视频进行预处理,增强其对比度与细节,使用基于深度学习技术的最新目标检测框架YOLOv3对采集处理后的热成像图像中特定目标进行检测,输出检测结果。测试结果表明,该方法对于夜间目标识别率高、实时性强,结合了红外热成像夜间监测和人工智能目标检测的优势,对于夜间的目标识别、跟踪技术具有重大应用价值。 Infrared thermal images reflect object temperature information that is less affected by environmental conditions.They have strong application value for nighttime security monitoring,driving assistance,shipping,military investigation,and other aspects,under certain conditions.In recent years,artificial intelligence has been used in the development of target detection and recognition technology in imaging and various fields.This paper proposes a nighttime target detection method combining infrared thermal imaging image processing and artificial intelligence target detection.Thermal imaging videos are acquired in real time for pre-processing in order to enhance the contrast and details of the thermal images,and the latest target detection framework,YOLOv3,based on deep learning is utilized to detect specific targets in the acquired thermal images and subsequently output the detection results.The test results show that the proposed method has high recognition rate and desirable real-time performance at nighttime;it combines the advantages of infrared thermal imaging nighttime monitoring and artificial intelligence target detection.Furthermore,it has been demonstrated that tracking technology has great application in nighttime target recognition.
作者 易诗 聂焱 张洋溢 赵茜茜 庄依彤 YI Shi;NIE Yan;ZHANG Yangyi;ZHAO Qianqian;ZHUANG Yitong(College of Information Science and Technology,Chengdu University of Technology,Chengdu 610059,China)
出处 《红外技术》 CSCD 北大核心 2019年第10期970-975,共6页 Infrared Technology
基金 国家大学生创新创业项目“基于深度学习的人脸识别跟随机器人”(201810616033)
关键词 红外热成像 目标识别 人工智能 YOLOv3 infrared thermal imaging target recognition artificial intelligence YOLOv3
  • 相关文献

参考文献4

二级参考文献33

  • 1尹超,向健勇,韩建栋.一种基于区域背景预测的红外弱小目标检测方法[J].红外技术,2004,26(6):62-65. 被引量:22
  • 2何伟,晋兆虎,张玲.一种改进的利用背景检测弱小目标的方法[J].重庆大学学报(自然科学版),2005,28(7):64-66. 被引量:4
  • 3王春平,孙国正,陈钱.基于灰度冗余的红外图像直方图处理技术[J].南京理工大学学报,2007,31(2):176-179. 被引量:9
  • 4Bertozzi M,Broggi A,Grisleri P. Pedestrian detection in infrared images[A].Parma,Italy:Parma University,2003.662-667.
  • 5Han Junwei,Ngan K N,Li Mingjing. Unsupervised extraction of visual attention objects in color images[J].IEEE Transactions on Circuits and Systems for Video Technology,2006,(01):141-145.doi:10.1109/TCSVT.2005.859028.
  • 6Ltti L,Koch C,Niebur E. A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,(11):1254-1259.doi:10.1109/34.730558.
  • 7Cheng Mingrning,Zhang Guoxin,Mitra N J. Global contrast based salient region detection[A].Colorado Springs,USA:IEEE Computer Society Press,2011.409-416.
  • 8Tran D,Forsyth D A. Configuration estimates improve pedestrian finding[A].Vancouver B C,Canada:NIPSMIT Press,2007.
  • 9Zhe Lin,Larry S D. Shape-based human detection and segmentation via hierarchical part-template matching[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,(04):604-618.doi:10.1109/TPAMI.2009.204.
  • 10Felzenszwakb P,Mcallester D,Ramanan D. A discriminatively trained,multiscale,deformable part model[A].Anchorage,AK:IEEE Computer Society Press,2008.1-8.

共引文献26

同被引文献93

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部