期刊文献+

基于特征的图像显著性检测

Image Saliency Detection Based on Features
下载PDF
导出
摘要 为了解决目前显著性检测中图像的纹理特征对其他特征(颜色、方向等)的影响问题,通过对该领域已有的算法和文章进行实验和比较,提出一个概念上明确和改进的基于对比度的显著性检测的直观算法。研究了将输入的图像用已改进的总变差模型来获取一个有效的主要结构,将提取到的主要结构图像分解为紧凑、感知、同质的元素,抽象出不必要的细节;进一步,基于这种抽象元素计算了两个对比度量,即颜色独特性和空间分布,通过高斯滤波得到两个对比度的显著图,将其进行融合。分析了融合后的显著图与目前比较经典的算法得到的显著图之间的改进之处。实验证实了去除纹理特征后提取到的显著图,有效地抑制了图像各特征之间的相互干扰,提高了显著图融合的精确度。 In order to solve the problem of the influence of the image texture features on other features(color,direction,etc.)in the current saliency detection,a contrast-based intuitive algorithm is proposed for saliency detection with the clear concept and improved performance by experimenting and comparing the existing algorithms and articles in the fields.The input image is extracted with an improved total variation model to obtain an effective main structure,which is decomposed into compact,perceptual,homogeneous elements,and abstracts unnecessary details.Furthermore,based on the abstract elements,two contrast quantities are computed,namely color uniqueness and spatial distribution,which are fused by Gaussian filtering to obtain a saliency map with the two contrasts.The improvement between the fused saliency map and the one obtained by the classical algorithms is analyzed.The experiment demonstrates that the saliency map without the texture features effectively suppresses the mutual interference among various image features,and improves the accuracy of the saliency map fusion.
作者 艾显丽 彭亚雄 陆安江 AI Xianli;PENG Yaxiong;LU Anjiang(Guizhou University,School of Big Data and Information Engineering,Guiyang 550025,China)
出处 《移动通信》 2019年第10期92-96,共5页 Mobile Communications
基金 贵州省科技重大专项:草海综合整治工程大数据系统集成与示范(黔科合重大专项字[2016]3022号)
关键词 显著性检测 纹理特征 对比度 saliency detection textural property contrast ratio
  • 相关文献

参考文献2

二级参考文献20

  • 1Hou X,Zhang L.Saliency detection:A spectral residual approach[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2007:1-8.
  • 2Hare J,Koch C,Perona P.Graph-based visual saliency[C].The 20th Annual Conference on Neural Information Processing Systems,2006:545-552.
  • 3Achanta R,Hemami S,Estrada F,et al.Frequency-tuned salient region detection[C].IEEE Conference on Computer Vision and Pattern Recognition,2009:1597-1604.
  • 4Goferman S,Zelnik-Manor L,Tal A.Context-aware saliency detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(10):1915-1926.
  • 5Itti L,Koch C,Niebur E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 6Zhang X N,Liu G Q,Hu Y,et al.A new two-sided coupling channel drop filter based on a two-dimensional photonic crystal[C].The 2nd International Conference on Opto-Electronics Engineering and Materials Research,2013:417-420.
  • 7Ren Z,Hu Y,Chia L T,et al.Improved saliency detection based on superpixel clustering and saliency propagation[C].The l8th Annual ACM International Conference on Multimedia,2010.
  • 8Achanta R,Shaji A,Smith K,etal.SLIC superpixels compared to state-of-the-art superpixel methods[C].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012:2274-2281.
  • 9Klein D A,Frintrop S.Salient pattern detection using w2 on multivariate normal distributions[C]// The 8th Symposium on Multispectral Image Processing and Pattern Recognition,2012:246-255.
  • 10Givens C R,Shortt R M.A class of wasserstein metrics for probability distributions[J].Michigan Math.,1984,31(2):33-40.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部