期刊文献+

基于卷积神经网络融合SIFT特征的人脸表情识别 被引量:20

FACE EXPRESSION RECOGNITION BASED ON CONVOLUTIONAL NEURAL NETWORK FUSING SIFT FEATURES
下载PDF
导出
摘要 表情识别技术是计算机从静态表情图像或动态表情图像中识别出特定的表情,是实现人机交互的基础.提出一种融合卷积神经网络(CNN)与SIFT特征的人脸表情识别方法.通过图像预处理得到规范化的表情图像;采用视觉词袋模型将图像提取的SIFT特征作进一步处理,将得到的图像特征向量作为局部特征,CNN提取的特征作为全局特征,全局特征用以描述表情的整体差异,局部特征用以描述表情的局部差异;将提取出的两组特征融合后采用Softmax分类.与流形稀疏表示(Manifold Sparse Representation,MSR)及3DCNN等方法在CK+及FER2013数据集上的实验表明,该方法是一种有效的表情识别方法. The expression recognition technology is that a computer recognizes a specific expression from a static expression image or a dynamic expression image,and is the basis for realizing human-computer interaction.This paper proposed a face expression recognition method that combined convolutional neural network(CNN)and SIFT features.We performed image preprocessing to obtain a normalized expression image.Then the visual bag of words model was used to further process the SIFT features extracted by images,we used image feature vector as a local feature and CNN features as global features.Global features were used to describe the overall difference in expressions.Local features were used to describe local difference in expressions.After the fusion of the two features,Softmax classification was adopted to classify them.Experiments on CK+dataset and FER2013 dataset with manifold sparse representation(MSR)and 3D CNN show that this method is an effective expression recognition method.
作者 张俞晴 何宁 魏润辰 Zhang Yuqing;He Ning;Wei Runchen(Beijing Key Laboratory of Information Service Engineering,Beijing Union University,Beijing 100101,China;Smart City College,Beijing Union University,Beijing 100101,China)
出处 《计算机应用与软件》 北大核心 2019年第11期161-167,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61572077,61370138,61872042)
关键词 卷积神经网络 SIFT特征 视觉词袋模型 特征融合 表情识别 Convolutional neural network SIFT features Visual bag of words model Feature fusion Expression recognition
  • 相关文献

参考文献8

二级参考文献47

  • 1YIN L J,WEI X ZH,SUN Y,et al. A 3D facia expression database for facial behavior research [ C ]. IEEE 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Southampton, UK, 10-12, 2006: 211-216.
  • 2TANG H, HUANG T S. 3D facial expression recognition based on automatically selected features [ C ]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops ,2008,6 : 1-8.
  • 3SOYEL H, DEMIREL H. Facial expression recognition using 3D facial feature distances [J]. ICIAR, 2008, 831-838.
  • 4SHA T,SONG M L,BU J J,et al. Feature level analysis for 3D facial expression recognition[ J]. Neurocomputing, 2011,74:2135-2141.
  • 5GUPTA S, MARKEY M K, BOVIK A C. Anthropometfic 3D face recognition [ J ]. Int. J. Comput. Vis. 2010, 90 ( 3 ) : 331-349.
  • 6CHENG SH CH,CHEN M Y,CHOU T C,et al. Semantic- based facial expression recognition using analytical hierarchy process [ J ]. Expert Systems with Applications,2007, 33 ( 1 ) ,86-95.
  • 7HE B W, LIN Z M. An automatic registration algorithm for the scattered point clouds based on the curvature feature [J]. Laser Technology, 2012,4 (27) : 1-8.
  • 8DORAI C, JMN A. COSMOS-a representation scheme for 3D free-form objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997; 19 (10) : 1115-1130.
  • 9KITTLER J, HATEF M, DUIN R, et al. "On combining classifers," IEEE Trans. Pattern Analysis and Machine Intelligence, 1998,20 ( 3 ) :226-239.
  • 10STEFANO B,BOULBABA B A, MOHAMED D, et al. 3D facial expression recognition using SIFT descriptors of automatically detected keypoints[J].The Visual Computer. 2011,6:1-16.

共引文献85

同被引文献139

引证文献20

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部