期刊文献+

基于改进DFT信道估计的导频污染减轻方案 被引量:1

Pilot pollution mitigation scheme based on improved DFT channel estimation
下载PDF
导出
摘要 规模MIMO技术通过在基站端和接收端安装大量天线,来提升多天线系统的MIMO增益,被列为第五代移动通信系统(5G)关键技术之一。针对制约大规模MIMO系统性能的导频污染问题提出了一种基于汉宁窗的改进DFT算法的信道估计方案。经过LS信道估计后的频域信号通过变换域信道后得到时域冲激响应,然后对干扰信号进行汉宁窗处理,筛选出有效的信道冲激响应,加快带外衰减,提高信道估计精度,以降低导频污染。仿真实验对比分析了LS估计算法、传统DFT估计算法、基于阈值的DFT信道估计和基于汉宁窗的改进DFT估计算法4种算法,提出的算法有效提高了估计精度且应用更广泛,在一定程度上减轻了导频污染。 Massive MIMO is one of the candidate technologies of the fifth generation mobile communication(5G),and it improves the MIMO gain of the MIMO system by configuring a large number of antennas at the base station and the user equipment.In this paper,an improved DFT algorithm for channel estimation based on Hanning window is proposed to solve the problem of pilot pollution for massive MIMO systems.The time domain impulse response is obtained after the signal passing through the transform domain channel,and the interference signal is processed by Hanning window,so as to filter out the effective channel impulse response.The experimental simulation makes a comparative analysis of four al gorithms,including LS estimation algorithm,traditional DFT estimation algorithm,DFT based on threshold and improved DFT estimation algorithm.The proposed algorithm effectively improves the channel estimation accuracy and reduces the lead frequency pollution.
作者 秦浩 刘剑飞 李红茹 QIN Hao;LIU Jianfei;LI Hongru(School of Electronic and Information Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《河北工业大学学报》 CAS 2019年第5期15-19,共5页 Journal of Hebei University of Technology
基金 河北省高层次人才资助项目(C2013001048,GCC2014011) 河北省高等学校科学技术研究项目(ZD2017021)
关键词 5G 大规模MIMO 导频污染 DFT信道估计 汉宁窗 5G Massive MIMO pilot pollution DFT channel estimation Hanning window
  • 相关文献

参考文献7

二级参考文献268

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2Costa M. H. M. Writing on dirty paper[ J]. IEEE Trans. Inf. Theory, 1983, 29(3) : 439-441.
  • 3Caire G. and Shamai S. (Shitz). On the achievable through- put of a muhiantenna Gaussian broadcast channel[ J ]. IEEE Trans. Inf. Theory, 2003, 49(7): 1691-1706.
  • 4Viswanath P. and Tse D. N. C. Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality [J]. IEEE Trans. Inf. Theory, 2003, 49(8) :1912-1921.
  • 5Yu W. and Cioffi J.M. Sum capacity of Gaussian vector broadcast channels[J]. IEEE Trans. Inf. Theory, 2004, 50(9) : 1875-1892.
  • 6Rusek F. , Persson D. , Lau B. K. , et al. Scaling up MI- MO:Opportunities and challenges with very large arrays [J]. IEEE Signal Processing Magazine, 2013, 30( 1): 40 - 60.
  • 7Marzetta T. L. Noncooperative cellular wireless with un- limited numbers of BS antennas[ J]. IEEE Trans. Wire- less Commun. , 2010, 9( 11 ):3590-3600.
  • 8Tulino A. M. and Verdu S. Random Matrix Theory and Wireless Communications [ M ]. Now Publishers, 2004.
  • 9Hoydis J. , Brink S. ten, and Debbah M. Massive MIMO in the UL/DL of cellular networks: How many antennas do we need[J]. IEEE Journal on Selected Areas in Com- munications, 2013, 31 ( 2 ) : 160-171.
  • 10Stojnic M. ,Vikalo H. ,and Hassibi B. Rate maximization in multi-antenna broadcast channels with linear prepro- cessing[J].IEEE Trans. Wireless Cnmmun., 2006, 5 (9) : 2338-2342.

共引文献785

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部