期刊文献+

一种改进的K-Means算法 被引量:6

An Improved K-Means Algorithm
下载PDF
导出
摘要 K-Means算法是一种经典的无监督聚类分析算法,具有运行速度快易于实现等优点,但使用该算法时需要指定聚类数目,且质心的选择具有不确定性。针对上述不足,提出一种基于最大最小距离和BWP指标相结合的K-Means算法。通过对UCI数据库中的4个数据集仿真实验的结果表明,所提出的改进算法在算法的准确率、聚类效果两方面均优于传统的K-Means算法以及基于最大最小距离的K-Means算法。 K-Means algorithm is a classical unsupervised clustering analysis algorithm.Although it has the advantages of fast running speed and easy implementation,it is necessary to specify the number of clustering when using this algorithm,and the selection of centroids is uncertain.In order to verify the performance of the improved algorithm,four data sets in UCI database are simulated and the test results show that,in order to verify the performance of the improved algorithm,a K-Means algorithm based on the combination of maximum and minimum distance and BWP index is proposed in this paper.The improved algorithm proposed in this paper is superior to the traditional K-Means algorithm and the K-Means algorithm based on maximum and minimum distance in terms of accuracy and clustering effect.
作者 韩存鸽 刘长勇 HAN Cunge;LIU Changyong(College of Mathematics and Computer Science,Wuyi University,Wuyishan,Fujian 354300,China;Fujian Provincial Key Laboratory of Cognitive Computing and Intelligent Information Processing,Wuyishan,Fujian 354300,China)
出处 《闽江学院学报》 2019年第5期49-54,90,共7页 Journal of Minjiang University
基金 福建省科技厅自然科学基金项目(2017J01651)
关键词 K-MEANS 聚类分析 最大最小距离 BWP UCI K-Means cluster analysis maximum and minimum distance BWP UCI
  • 相关文献

参考文献7

二级参考文献52

  • 1江小平,李成华,向文,张新访,颜海涛.k-means聚类算法的MapReduce并行化实现[J].华中科技大学学报(自然科学版),2011,39(S1):120-124. 被引量:79
  • 2杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:191
  • 3周涓,熊忠阳,张玉芳,任芳.基于最大最小距离法的多中心聚类算法[J].计算机应用,2006,26(6):1425-1427. 被引量:72
  • 4MacQueen J. Some methods for classification and analy- sis of multivariate observations[C]//Lucien M. Le Cam and Jerzy Neyman. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1 .. Statistics. Berkeley: University of California Press, 1967:281-297.
  • 5Gao Xinbo, Li Jie,Tao Dacheng, et al. Fuzziness meas urement of fuzzy sets and its application in cluster validi ty analysis[J]. International Journal of Fuzzy System 2007, 9(4) :188-197.
  • 6Dudoit S, Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset [J]. Genome Biology, 2002, 3(7): 1-21.
  • 7Rousseeuw P J. Silhouettes.. A graphical aid to the interpre- tation and validation of cluster analysis[J].Computational and Applied Mathematics, 1987, 20: 53-65.
  • 8Kapp A V, Tibshirani R. Are clusters found in one dataset present in another dataset? [J].Biostatistics, 2007, 8(1): 9-31.
  • 9Lin T Y. Granular eomputing: from rough sets and neighborhood systems to information granulation and computing with words[C]//European Congress on In- telligent Techniques and Soft Computing, 1997: 1602-1606.
  • 10Yao Y Y. Granular computing., basic issues and possi- ble solutions[C]//Wang P P. Proceedings of the 5th Joint Conference on Information Sciences, Volume I. Atlantic: Association for Intelligent Machinery, 2000: 186-189.

共引文献93

同被引文献55

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部