期刊文献+

基于数值仿真的多馈微波加热温度控制系统 被引量:14

Multi-feed Microwave Heating Temperature Control System Based on Numerical Simulation
原文传递
导出
摘要 针对常用多模腔加热的不均匀性,对多馈口微波加热进行了研究,提出了一种基于数值仿真分析来设计微波加热系统的方法。通过建立1/2全尺寸有限元模型进行仿真计算,分析了馈口数量对微波加热的影响,在此基础上采用Bang-Bang控制策略设计了加热系统。其中,圆柱形谐振腔模型的高度为800 mm,半径为395 mm。腔体周围环形布置10个微波源,通过德拜模型仿真温度变化和测量值进行对比,验证了仿真模型的正确性。不同馈口数的COMSOL仿真结果表明,馈口数为4时,温度变异系数(COV)为0.0897,相比于一个馈口的情况,温度的均匀性提高了10.5%。通过实验测试了微波加热系统性能,实验结果表明,媒质温度能得到合理控制。 Aiming at the non-uniformity of common multi-mode cavity heating,the multi-feed microwave heating is studied.A method based on numerical simulation analysis to design microwave heating system is proposed.By establishing a 1/2 full-scale finite element model to simulate the temperature field and analyzing the influence of the number of feed ports on temperature uniformity,the microwave heating system is designed based on Bang-Bang control strategy.The cylindrical cavity model has a height of 800 mm and a radius of 395 mm.Ten microwave sources are arranged around the cavity,and the temperature variation and measured values are simulated by Debye model to verify the correctness of the simulation model.The COMSOL simulation results of different feed ports show that the temperature COV(Coefficient of Variation)is 0.0897 when the number of feed ports is 4.Compared with a feed port,the temperature uniformity is improved by 10.5%.Finally,the performance of the microwave heating system is tested by experiments.The experimental results show that the sample temperature can be reasonably controlled.
作者 周明长 李少甫 ZHOU Ming-chang;LI Shao-fu(School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,China)
出处 《微波学报》 CSCD 北大核心 2019年第5期92-96,共5页 Journal of Microwaves
基金 国家自然科学基金(U1830201)
关键词 微波加热 多微波源 均匀性 COMSOL 仿真 温度控制 microwave heating multiple microwave source uniformity COMSOL simulation temperature control
  • 相关文献

参考文献2

二级参考文献8

  • 1金钦汉主编.微波化学[M]. 科学出版社, 1999
  • 2Li Wu,Huacheng Zhu,Kama Huang.Thermal analysis on the process of microwave-assisted biodiesel production[J]. Bioresource Technology . 2013
  • 3S.S.R. Geedipalli,V. Rakesh,A.K. Datta.Modeling the heating uniformity contributed by a rotating turntable in microwave ovens[J]. Journal of Food Engineering . 2007 (3)
  • 4John R.Bows,Maria L.Patrick,RuthJanes,David C.Dibben.Microwave phase control heating[J]. International Journal of Food Science & Technology . 2001 (4)
  • 5Wu X F.Experimental and theoretical study of microwave heating of thermal runaway materials. . 2002
  • 6Sato,M,Roy,R,Ramesh,P,Agrawall,D.Microscopic non-equilibrium heating a possible mechanism of microwave effects. International Symposium on Microwave Science and Its Application to Related Fields . 2004
  • 7Alex,er Stadler,Behrooz H. Yousefi,Doris Dallinger,Peter Walla,Erik Van der Eycken,Nadya Kaval,C. Oliver Kappe.Scalability of Microwave-Assisted Organic Synthesis. From Single-Mode to Multimode Parallel Batch Reactors. Organic Process Research and Development . 2003
  • 8杨彪,彭金辉,郭胜惠,张世敏,李玮,何涛.Acid-pickling plates and strips speed control system by microwave heating based on self-adaptive fuzzy PID algorithm[J].Journal of Central South University,2012,19(8):2179-2186. 被引量:7

共引文献6

同被引文献233

引证文献14

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部