期刊文献+

基于低分辨率红外阵列传感器的人体身份和动作识别 被引量:7

Human identity and motion recognition based on low resolution infrared array sensor
下载PDF
导出
摘要 本文针对人体身份及动作识别的问题,提出一种基于低分辨率红外阵列传感器并使用卷积神经网络进行分类识别的方法,这种方法可以识别出人的身份和跌倒、坐下以及行走动作。本文使用的卷积神经网络是基于VGGNet搭建的,由输入层、5层卷积层、3层池化层、1层全连接层和输出层构成,自动提取红外热图像中的信息特征,对身份及动作进行分类,在良好的隐私保护下避免了繁琐的人工提取特征。经过实验测试,卷积神经网络算法识别动作平均准确率为93.3%,其中行走识别准确率达到100%,坐下识别准确率为90%,跌倒识别准确率为90%,身份识别准确率为96.7%。 Aiming at the problem of human identity and motion recognition,a method based on low resolution infrared array sensor and using convolutional neural network for classification and recognition is proposed,which can identify the identity of people and actions of falling,sitting and walking.The convolutional neural network used in this paper is based on VGGNet.It consists of input layer,five-layer convolutional layer,three-layer pooling layer,one layer of fully connected layer and output layer.It automatically extracts information features in infrared thermal images,and classifies actions,avoids the cumbersome manual extraction features under good privacy protection.After experimental testing,the average accuracy of convolutional neural network algorithm recognition is 93.3%,of which the walking recognition accuracy rate is 100%,the sitting recognition accuracy is 90%,the fall recognition accuracy is 90%,and the identity recognition accuracy is 96.7%.
作者 王召军 许志猛 Wang Zhaojun;Xu Zhimeng(College of Physics and Information Engineering,Fuzhou University,Fuzhou 350108)
出处 《电气技术》 2019年第11期6-10,26,共6页 Electrical Engineering
基金 国家自然科学基金资助项目(61401100) 福建省自然科学基金资助项目(2018J01805) 福州大学人才基金(GXRC-18083)
关键词 低分辨率红外阵列传感器 卷积神经网络 动作识别 身份识别 low resolution infrared array sensor convolutional neural network motion recognition identification
  • 相关文献

参考文献5

二级参考文献18

  • 1朱月妹,袁浩斌,陈雷.老年人跌倒危险因素的调查[J].护理实践与研究,2007,4(10):5-7. 被引量:23
  • 2Nixon M S,Carter J N,Cunado D,et al.Automatic gait recognition [A].In:Proceedings of IEE Colloquium "Motion Analysis and Tracking" [C],London,U.K.,1999:1/3 ~6/3.
  • 3Amit Kale,Rajagopalan A N,Sundaresan A,et al.Identification of Humans Using Gait[R].MD 20740,Center for Automation Research University of Maryland at College Park,2002.
  • 4Lily Lee.Gait Analysis for Classification [R].AI Technical Report 2003-014,The city of Cambridge,Massachusetts,USA:Massachusetts Institute of Technology-Artificial Intelligence Iaboratory,2003.
  • 5Cunado D,Nash J M,Nixon M S,et al.Gait extraction and description by evidence-gathering [A].In:Proceedings of the International Conference on Audio and Video Based Biometric Person Authentication[C],Washington DC,USA,1999:43 ~ 48.
  • 6Wang Liang,Tan Tie-niu,Ning Hua-zhong,et al.Silhouette analysis-based gait recognition for human identification [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12):1505 ~ 1518.
  • 7Milan Sonka,Vaclav Hlavac,Roger Boyle.Image Processing,Analysis,and Machine Vision (1 edition) [ M ].London,U K:Chapman & Hall computing Series.Chapman & Hall Computing,1993:45 ~ 48.
  • 8Zhang Deng-sheng,Lu Guo-jun.A comparative study on shape retrieval using fourier descriptors with different shape signatures[ A].In:Proceedings of IEEE Conference on Multimedia and Expo(ICME'01) [C],Tokyo,Japan.,2001,8:317 ~ 320.
  • 9Rabiner L R.A tutorial on hidden Markov models and selected applications in speech recognition [ J].Proceedings of the IEEE,1989,77(2):257 ~285.
  • 10Philips P J,Moon H,Rizvi S A.The feret evaluation methodology for face-recognition algorithms [J].IEEE Transactions on Pattern Analysis and Machine Intelligent,2000,22 (10):1090 ~ 1100.

共引文献69

同被引文献49

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部