摘要
主要研究二阶常微分方程边值问题{y"(t)=f(t,y(t),y'(t)),t∈(a,b),y(a)=A,y(b)=αy(η),其中η∈(a,b)且α(η-a)≠b-a.非线性项f满足一定条件下,运用打靶法获得了该问题解的存在性,并将此结果推广到m-点边值问题.最后,通过MATLAB数值模拟验证了方法的可行性.
In this paper,We mainly study three-point boundary value problem {y"(t)=f(t,y(t),y'(t)),t∈(a,b),y(a)=A,y(b)=αy(η),where η∈(a,b) and α(η-a)≠b-a.Under certain conditions of nonlinearity f,we obtained the existence by using the shooting method.Furthermore,we generalized this results to the m-point boundary value problem.Finally,we verified our result by MATLAB numerical simulation.
作者
魏小斐
曹文娟
WEI Xiao-fei;CAO Wen-juan(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处
《数学的实践与认识》
北大核心
2019年第20期288-295,共8页
Mathematics in Practice and Theory
基金
国家自然科学基金(11801243)
甘肃省自然科学基金(1308RJZA113)
兰州交通大学青年科学基金(2017012)
关键词
打靶法
存在性
M
-
点边值问题
Shooting method
Existence
m—point boundary value problem