期刊文献+

基于超球形模糊支配的高维多目标粒子群优化算法 被引量:7

Many-objective particle swarm optimization algorithm based on hyper-spherical fuzzy dominance
下载PDF
导出
摘要 高维多目标优化问题(MAOP)会随着待优化问题维度的增加形成巨大的目标空间,导致在目标空间中非支配解的比例急剧增加,削弱了进化算法的选择压力,降低了进化算法对MAOP的求解效率。针对这一问题,提出一种以超球型支配关系降低种群中非支配解数量的粒子群优化(PSO)算法。算法以模糊支配策略来维持种群对MAOP的选择压力,并通过全局极值的选择和外部档案的维护来保持种群个体在目标空间中的分布。在标准测试集DTLZ和WFG上的仿真结果表明,所提算法在求解MAOP时具备较优的收敛性和分布性。 With the increase of the dimension of the problem to be optimized,Many-objective Optimization Problem(MAOP)will form a huge target space,resulting in a sharp increase of the proportion of non-dominant solutions.And the selection pressure of evolutionary algorithms is weakened and the efficiency of evolutionary algorithms for solving MAOP is reduced.To solve this problem,a Particle Swarm Optimization(PSO)algorithm using hyper-spherical dominance relationship to reduce the number of non-dominant solutions was proposed.The fuzzy dominance strategy was used to maintain the selection pressure of the population to MAOP.And the distribution of individuals in the target space was maintained by the selection of global extremum and the maintenance of external files.The simulation results on standard test sets DTLZ and WFG show that the proposed algorithm has better convergence and distribution when solving MAOP.
作者 谭阳 唐德权 曹守富 TAN Yang;TANG Dequan;CAO Shoufu(College of Mathematics and Statistics,Hunan Normal University,Changsha Hunan 410081,China;Department of Network Technology,Hunan Radio and Television University,Changsha Hunan 410004,China;Department of information technology,Hunan Police Academy,Changsha Hunan 410138,China)
出处 《计算机应用》 CSCD 北大核心 2019年第11期3233-3241,共9页 journal of Computer Applications
基金 国家自然科学基金资助项目(61471169) 湖南省自然科学基金资助项目(2018JJ2104) 湖南省教育厅科学研究基金资助项目(15C0928)~~
关键词 高维多目标优化问题 PARETO支配 粒子群 多样性 Many-objective Optimization Problem(MAOP) Pareto dominance particle swarm diversity
  • 相关文献

参考文献1

二级参考文献26

  • 1Coello C C, Lamont G B, Van Veldhuizen D A. Evolution- ary Algorithms for Solving Multi-objective Problems (2nd edition). New York: Springer, 2007. 3-57.
  • 2Gong M Guo, Jiao L C, Yang D D, Ma W P. Research on evolutionary multi-objective optimization algorithms. Jour- nal of Software, 2009, 20(2): 271-289.
  • 3蕉每成,尚荣华,马支萍,公茂果,李阳阳,刘芳.多目标优化免疫算法、理论和应用.北京:科学出版社,2010.3-27.
  • 4Deb K, Jain H. An evolutionary many-objective optimiza- tion algorithm using reference-point-based nondominated sorting approach, Part h solving problems with box con- straints. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.
  • 5Yang S X, Li M Q, Liu X H, Zheng J H. A grid-based evo- lutionary algorithm for many-objective optimization. IEEE ansactions on Evolutionary Computation, 2013, 17(5): 721-736.
  • 6Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transac- tions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 7Corne D W, Jerram N R, Knowles J D, Gates M J. PESA- II: region-based selection in evolutionary multiobjective op- timization. In: Proceedings of the 2001 Genetic and Evolu- tionary Computation Conference. San Francisco, USA: Mor- gan Kaufmann Publishers, 2001. 283-290.
  • 8Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm. In: Proceedings of the 2002 International Conference on Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems. Berlin: Springer, 2002. 95-100.
  • 9Zhang Q F, Li H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
  • 10Deb K, Mohan M, Mishra S. Evaluating the e-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation, 2005, 13(4): 501-525.

共引文献13

同被引文献86

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部