期刊文献+

甘肃省农村居民消费结构的动态分析 被引量:4

Dynamic Analysis of Consumption Structure of Rural Residents in Gansu Province
下载PDF
导出
摘要 为了解甘肃省农村居民消费水平和消费结构变化特征,文章根据1998-2017年甘肃省农村居民消费统计资料,运用函数型数据分析方法定量化刻画了甘肃省农村居民消费结构的动态变化特征。通过研究人均消费支出和人均可支配收入的关系发现,随着收入的上升和社会保障体系的完善,居民消费信心在逐步增加;恩格尔系数的动态变化表明甘肃省农村居民消费状况开始向小康水平过渡,但是后期基尼系数能量低,说明短期内很难达到富裕水平;从8大类消费项目的各期主成分得分图可以看出,甘肃省农村居民消费结构正从解决生存问题的生活型消费向享受型消费转变。 Gansu Province is one of the underdeveloped areas in western China.The rural population accounts for the majority.Rural development is a key to improve the economic level of Gansu Province and reduce poverty.In order to identify with the characteristics of level and structure of consumption of rural residents in Gansu Province,this paper quantitatively characterizes the dynamic changes of rural residents’ consumption structure by using functional data analysis methods based on the statistical data of rural residents in Gansu Province from 1998 to 2017.Through studying the relationship between per capita consumption expenditure and per capita disposable income,it is found that with the increase of income and the improvement of social security system,the consumer confidence is gradually increasing.The dynamic change of Engel’s coefficient indicates that the consumption situation of rural residents in Gansu Province has begun to transition to a well-off level.However,the low strength of the late Gini coefficient indicates that it is difficult to reach the level of wealth in a shorter term.It can be seen from the principal component score chart of eight primary consumption categories in each period that the consumption structure of rural residents in Gansu Province is changing from consumption for survival to consumption for pleasure.
作者 卢旺 黄恒君 LU Wang;HUANG Heng-jun(School of Statistics,Lanzhou University of Finance and Economics,Lanzhou 730020,China)
出处 《兰州财经大学学报》 2019年第5期15-26,共12页 Journal of Lanzhou University of Finance and Economics
基金 国家社会科学基金项目“因子分析的稀疏处理理论及其拓展研究”(18BTJ038)资助
关键词 农村消费结构 函数型数据 主成分分析 rural consumption structure functional data principal component analysi
  • 相关文献

参考文献20

二级参考文献98

共引文献171

同被引文献22

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部