期刊文献+

针对表面粗糙度和刀具振幅的切削用量优化研究 被引量:3

Research on Optimization of Cutting Dosage for Surface Roughness and Tool Vibration Amplitude
下载PDF
导出
摘要 对进给量、切削速度和轴向切深这3个切削参数对工件表面粗糙度和刀具振动幅度的影响进行试验研究。采用BBD响应面法对6061铝工件进行端铣加工试验,并通过数学建模对试验结果进行分析。提出一种基于遗传算法的多目标优化方法来同时减小工件表面粗糙度和刀具振动幅度。建立能预报表面粗糙度和刀具振动的径向基神经网络模型,并通过试验验证其准确性。 The effects of three cutting parameters,such as feed rate,cutting speed and axial depth of cut,on the surface roughness of the workpiece and the vibration amplitude of the tool were studied experimentally.The end milling test for 6061 aluminum work-piecewas carried out by BBD response surface method,and the experimental results were analyzed by mathematical modeling.A multi-ob-jective optimization method based on genetic algorithm was proposed to reduce the surface roughness and tool vibration amplitude.A ra-dial basis neural network model for predicting surface roughness and tool vibration was established and its accuracy was verified by experi-ments.
作者 李春雷 倪俊芳 LI Chunlei;NI Junfang(Department of Precision Manufacturing Engineering,Suzhou Vocational Institute of Industrial Technology,Suzhou Jiangsu 215104,China;School of Mechatronics,Soochow University,Suzhou Jiangsu 215021,China)
出处 《机床与液压》 北大核心 2019年第20期51-54,共4页 Machine Tool & Hydraulics
基金 江苏高校品牌专业建设工程资助项目(PPZY2015B186) 国家自然科学基金资助项目(51105263)
关键词 切削用量 表面粗糙度 刀具振幅 BBD响应面法 遗传算法 径向基神经网络 Cutting dosage Surface roughness Tool vibration amplitude BBD response surface method Genetic algorithm Radial ba-sis neural network
  • 相关文献

参考文献6

二级参考文献28

共引文献7

同被引文献26

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部