期刊文献+

基于改进卷积神经网络的交通标志识别方法 被引量:6

Traffic Sign Recognition Method Based on Improved Convolutional Neural Network
下载PDF
导出
摘要 针对智能交通系统中小尺度交通标志识别率低的问题,文中提出一种改进卷积神经网络的交通标志识别方法。该方法通过在Faster R-CNN算法的低层特征图上增加优化的RPN网络,提升了小尺度交通标志的检测率。该方法还利用Max Pooling方法实了现图像的局部细节特征与全局语义特征充分融合。在TT-100K数据集上稍微实验结果表明新方法可以明显提高小尺度交通标志的识别率。 Aiming at the low recognition rate of small scale traffic signs in intelligent transportation system, an improved convolution neural network method for traffic sign recognition was proposed in this paper.This method could improve the detection rate of small-scale traffic signs by adding an optimized RPN network to the low-level feature map of Faster R-CNN algorithm.In addition, Max Pooling method was used to fully fuse the local details and global semantic features of the image. The experimental results on TT-100 K data set showed that the proposed method could significantly improve the recognition rate of small-scale traffic signs.
作者 袁小平 王岗 王晔枫 汪喆远 孙辉 YUAN Xiaoping;WANG Gang;WANG Yefeng;WANG Zheyuan;SUN Hui(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221000,China)
出处 《电子科技》 2019年第11期28-32,共5页 Electronic Science and Technology
基金 江苏省自然科学基金(BK20170278)~~
关键词 深度学习 交通标志识别 卷积神经网络 FASTER R-CNN RPN 特征融合 deep learning trafficsign recognition convolutional neural network Faster R-CNN RPN feature fusion
  • 相关文献

参考文献3

二级参考文献11

共引文献25

同被引文献33

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部