摘要
We introduce a function model for the Teichmüller space of a closed hyperbolic Riemann surface.Then we introduce a new metric on the Teichmüller space by using the maximum norm on the function space.We prove that the identity map from the Teichmüller space equipped with the Teichmüller metric to the Teichmüller space equipped with this new metric is uniformly continuous. Moreover, we prove that the inverse of the identity, i.e., the identity map from the Teichmüller space equipped with this new metric to the Teichmüller space equipped with the Teichmüller metric, is continuous(but not uniformly). Therefore, the topology induced by the new metric is the same as the topology induced by the Teichmüller metric on the Teichmüller space.Finally, we give a remark about the pressure metric on the function model and the Weil-Petersson metric on the Teichmüller space.
We introduce a function model for the Teichmüller space of a closed hyperbolic Riemann surface.Then we introduce a new metric on the Teichmüller space by using the maximum norm on the function space.We prove that the identity map from the Teichmüller space equipped with the Teichmüller metric to the Teichmüller space equipped with this new metric is uniformly continuous. Moreover, we prove that the inverse of the identity, i.e., the identity map from the Teichmüller space equipped with this new metric to the Teichmüller space equipped with the Teichmüller metric, is continuous(but not uniformly). Therefore, the topology induced by the new metric is the same as the topology induced by the Teichmüller metric on the Teichmüller space.Finally, we give a remark about the pressure metric on the function model and the Weil-Petersson metric on the Teichmüller space.
基金
supported by the National Science Foundation of USA (Grant No. DMS1747905)
collaboration grant from the Simons Foundation (Grant No. 523341)
the Professional Staff Congress of the City University of New York Award (Grant No. PSC-CUNY 66806-00 44)
National Natural Science Foundation of China (Grant No. 11571122)