期刊文献+

基于极限学习机的海上钻井机械钻速监测及实时优化 被引量:16

Extreme learning machine-based offshore drilling ROP monitoring and real-time optimization
下载PDF
导出
摘要 海上钻井作业环境恶劣,作业风险和费用高,如何提高钻井效率、降低钻井成本一直是倍受关注的问题。基于极限学习机,建立了海上钻井机械钻速预测模型,并以南海YL8-3-1井为例进行了验证与钻井参数实时优化。结果表明,基于极限学习机的海上钻井机械钻速预测模型预测结果与实测结果较为吻合,可以对机械钻速进行实时监测并通过优化钻井参数实现钻井事故预警及有效预防,进而提高钻井效率。本文研究可对海上安全高效钻井作业及油田数字化、智能化发展提供借鉴。 Offshore drilling is subject to bad environmental and high risks and cost.How to improve the drilling efficiency and reduce drilling cost has always been a difficulty in offshore drilling.Based on the extreme learning machine,the prediction model of offshore drilling ROP has been established and verified on Well YL8-3-1in the South China Sea.The results show that the prediction results of this mode are in good agreement with the measured results.Therefore,it is able to conduct the real-time monitoring of ROP and optimize the drilling parameters,and realize the drilling accident precaution and effective prevention,thus improving the drilling efficiency.This study can provide references for the safe and efficient offshore drilling as well as the digital and intelligent development of oilfields.
作者 赵颖 孙挺 杨进 李炎军 黄熠 闫宇龙 ZHAO Ying;SUN Ting;YANG Jin;LI Yanjun;HUANG Yi;YAN Yulong(China University of Petroleum,Beijing 102249,China;CNOOC China Limited,Zhanjiang Branch,Zhanjiang,Guangdong 524057,China;Beihang University,Beijing 100191,China)
出处 《中国海上油气》 CAS CSCD 北大核心 2019年第6期138-142,共5页 China Offshore Oil and Gas
基金 “十三五”国家科技重大专项“莺琼盆地高温高压天然气富集规律与勘探开发关键技术(三期)(编号:2016ZX05024-005)” 中国石油大学(北京)引进人才科研启动基金项目“页岩气藏单井最终可采储量计算(编号:2462017YJRC034)”部分研究成果
关键词 极限学习机 海上钻井 机械钻速 实时优化 钻井效率 extreme learning machine offshore drilling ROP real-time optimization drilling efficiency
  • 相关文献

参考文献1

二级参考文献11

共引文献2

同被引文献179

引证文献16

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部