期刊文献+

基于双响应曲面的精密产品子集模拟可靠稳健优化设计 被引量:2

Reliability-based robust design optimization for precision product by dual response surface methodology and subset simulation
下载PDF
导出
摘要 针对不确定性场景下小失效概率的精密产品可靠性问题,提出了基于双响应曲面法(dual response surface methodology,DRSM)与子集模拟的可靠稳健优化方法。首先,建立精密产品多失效模式极限状态的RSM模型和以质量特性均值方差为优化目标的功能函数DRSM模型。其次,在此基础上运用子集模拟法进行可靠性分析,将精密产品小失效概率描述成一系列较大的条件失效概率之积。最后,将极值事件的优化问题视作稀有事件的可靠性问题的特例,基于该转换思想采用子集模拟法将优化问题在可靠性问题的框架内进行求解。案例分析及验证结果表明所提方法的有效性。 To solve the problem of small failure probability in the precision product, a reliability-based robust design optimization method is proposed based on dual response surface methodology (DRSM) and subset simulation. Firstly, the limit state of failure modes is built based on RSM and performance function with mean-variance is built by DRSM. Secondly, the reliability analyze by the subset simulation, which convert small failure probability to large conditional failure probability. Then the larger conditional failure probability is estimated by density function of sampling. Finally, optimization problem is regarded as rare events for reliability problem. Subset simulation is used to solve the robust optimization within the reliability analysis framework. The results of numerical example demonstrate the effectiveness of the proposed method.
作者 吴佳伟 宋华明 万良琪 黄甫 杨加猛 WU Jiawei;SONG Huaming;WAN Liangqi;HUANG Fu;YANG Jiameng(School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China;College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2019年第12期2911-2918,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(71571102,51665017) 江苏省普通高校研究生科研创新计划创新项目(SJKY19_0376)资助课题
关键词 小失效概率 可靠稳健优化 子集模拟 双响应曲面 small probability failure reliability-based design optimization subset simulation dual response surface methodology
  • 相关文献

参考文献3

二级参考文献43

  • 1张峰,吕震宙.串联结构模糊可靠性灵敏度分析的自适应重要抽样法[J].西北工业大学学报,2009,27(2):162-167. 被引量:2
  • 2庞宝才,吕震宙,吕媛波.变量正态相关时模糊可靠性灵敏度分析的矩方法[J].西北工业大学学报,2009,27(4):486-491. 被引量:1
  • 3Gargama H, Chaturvedi S K. Criticality assessment models for failure mode effects and criticality analysis using fuzzy logic[J]. IEEE Trans. on Reliability ,2010,60 (1) :102 - 110.
  • 4Ahammed M, Melehers R E. Gradient and parameter sensitivity esti- mation for systems evaluated using Monte Carlo analysis[J]. Relia- bility Engineering and System Safety, 2006,91 (5) : 594 - 601.
  • 5Chen L, Lti Z Z. A new numerical method for general failure proba- bility with fuzzy failure region [J]. Key Engineering Materials, 2007,102(3) :353 - 358.
  • 6Ni Z, Qiu Z P. Hybrid probabilistic fuzzy and non-probabilistic model of structural reliability[J]. Computers & Industrial Engi- neering ,2010,58(3) :463 - 467.
  • 7Dong Y G, Wang A N. A fuzzy reliability analysis based on the transformation between discrete fuzzy variables and discrete ran- dom variables[J]. International Journal of Reliability, Quality and Safety Engineering, 2006,10 (3) :25 - 35.
  • 8Fabio B, Franco B, Pier Giorgio M. Fuzzy reliability analysis of concrete structures[J]. Computers & Structures, 2004,82 (13) : 1033 - 1052.
  • 9Jiang Q M, Chen C H. A numerical algorithm of fuzzy reliability[J]. Reliability Engineering & System Safety, 2003,80 (3) : 299 - 307.
  • 10Sues R H, Cesare M A. System reliability and sensitivity factor via the MPPSS method [ J ]. Probabilistic Engineering Mechanics, 2005,20(2) :148 - 157.

共引文献15

同被引文献23

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部