期刊文献+

基于压缩感知的重建算法仿真分析 被引量:9

Simulation analysis of reconstruction algorithm based on compressed sensing
原文传递
导出
摘要 压缩感知理论突破传统采样定理的限制,为研究信号处理提供了新思路,极大地吸引了相关研究人员的关注。将采用稀疏基为小波基、高斯随机矩阵为观测矩阵,贪婪类算法和基于l2范数的迭代重加权最小二乘算法(IRLS)作为图像重构算法,并进行了仿真与比较。经过仿真分析,IRLS算法重构的峰值信噪比较大,重构质量较好,但时间较长。在对重构质量要求不是很高时,可选用贪婪类算法中运行速度较快的ROMP算法。 Compressed sensing theory breaks through the limitations of the traditionalsampling theorem and provides a new way of thinking for the study of signal processing.Since it was put forward,it has attracted the attention of relevant researchers.In this pap-er,wavelet basis is used as the image sparse matrix,Gauss random matrix as observationmatrix,greedy algorithm and norm-based iterative weighted least squares algorithm(IRLS)areused as image reconstruction algorithmsand simulation and comparison are made.It isfound that,the peak signal-to-noise ratio(PSNR)reconstructed by IRLS algorithm is larger,the reconstructed quality is better,while the time is lo-nger after simulation analysis.When the quality of reconfiguration is not very high,the g-reedy ROMP algorithm which runs faster could be chosen.
作者 张珊珊 赵建华 Zhang Shanshan;Zhao Jianhua(Xi′an Technological University,Electronic Information Engineering,Xi′an 710021,China)
出处 《国外电子测量技术》 2019年第10期44-48,共5页 Foreign Electronic Measurement Technology
关键词 压缩感知 重构算法 IRLS算法 贪婪算法 compressed sensing reconstruction algorithm IRLS algorithm greedy algorithm
  • 相关文献

参考文献7

二级参考文献136

  • 1Donoho D. Compressed sensing[J]. IEEE Trans. on Information Theory,2006,52(4):1289-1306.
  • 2Laska J N, Kirolos S, Duarte M F, et al. Theory and implementation of an analog- to- information oonverter using Random Demodulation[J]. IEEE Trans. on Circuits and Systems, 2007,42(3) : 1959 - 1962.
  • 3Candes E,Wakin M B. An Introduction to Compressive Sampiing[ J ]. IEEE Signal Processing Magazine, 2008,48 ( 4 ) : 21 - 30.
  • 4Cormode G, Muthukrishnan S. Combinatorial Algorithms For Compressed Senaing [ J ]. IEEE Signal Processing Magazine, 2006,46(3) : 198 - 201.
  • 5Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. on Information Theory,2006,52 (2) :489 - 509.
  • 6Chen S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[ J ]. SIAM Review,2001,43(1) : 129 - 159.
  • 7Needell D, Vershynin R, Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [J]. IEEE Trans. on Information Theory,2006,52(2):49- 59.
  • 8Tropp J A,Gilbert A. Signal Recovery from Partial Information by Orthogonal Matching Pursuit [EB/OL]. 2005- 04. www-personal, umich, edu/-jtropp/papers/TG05 - Signal - Recover. pdf.
  • 9Kim Seung - Jean, Koh K, Lustig M, et al. An Interior - Point Method for Large- Scale- Regularized Least Squares [ J ]. IEEE Journal of Selected Topics in Singnal Processing,2007,4 (1) :606 - 617.
  • 10Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[ J ]. Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing,2007,1(4):586 - 598.

共引文献220

同被引文献74

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部