摘要
为了解决传统花卉识别方法中特征提取主观性强、模型泛化能力差、错分率高的问题,提出一种基于Inception_v3的深度迁移学习模型的花卉图像识别方法。本研究对5种常见花卉图像进行识别分类,首先对原始图像进行预处理,通过对每张图像进行水平翻转、旋转操作,扩增数据集;其次,采用预训练完毕的Inception_v3模型,对其在ImageNet上训练好的网络参数进行迁移学习,对各个参数进行微调,并保留原模型的特征提取能力,并将原模型的全连接层替换为符合本研究要求的5分类softmax分类输出层,从而构建基于深度迁移学习的识别模型。对5种花卉共计11000张图像进行训练和验证,平均识别正确率达到93.73%,与传统的花卉识别方法相比,识别率得到提高,模型鲁棒性更强,具有一定的使用价值。
出处
《江苏农业科学》
2019年第20期231-236,共6页
Jiangsu Agricultural Sciences