期刊文献+

融合光流与改进ORB算法的单目视觉里程计 被引量:5

Monocular vision odometer integrating optical flow and improved ORB algorithm
下载PDF
导出
摘要 针对光流法定位精度差的问题,设计了一种光流和改进定向二进制简单描述符(ORB)算法融合的单目视觉里程计方法。首先利用光流法进行帧间位移定位,并根据经验设定每帧跟踪的最少特征点数,在跟踪特征点数低于设定的阈值后,利用改进的ORB算法进行帧间位移定位,最后通过二者的循环运行更新机器人的位置和姿态。结果表明:该方法克服了光流法定位精度差的缺点,突出了改进ORB算法定位准确性的优点,能够提供较准确的定位输出。 Aiming at the problem of poor positioning precision of optical flow method,a monocular vision odometer method based on fusion of optical flow and improved orientated binary(ORB) simple descriptor algorithm is designed. Firstly,the optical flow method is used to locate the inter-frame displacement,and the minimum number of feature points per frame is set according to the experience. After the number of tracking feature points are lower than the set threshold,the improved ORB algorithm is used to locate the inter-frame displacement. Finally,the position and attitude of the robot are updated through the cyclic operation of the two. The results show that this method overcomes the shortcomings of poor positioning precision of optical flow method,highlights the advantages of positioning accuracy of improved ORB algorithm,and can provide more accurate positioning output.
作者 唐浩 王红旗 茹淑慧 TANG Hao;WANG Hongqi;RU Shuhui(School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China)
出处 《传感器与微系统》 CSCD 2019年第12期83-85,共3页 Transducer and Microsystem Technologies
基金 河南省科技攻关计划项目(172102210270)
关键词 单目视觉里程计 光流 改进ORB算法 阈值 monocular vision mileage optical flow improved ORB algorithm threshold
  • 相关文献

参考文献3

二级参考文献16

  • 1ROYER E,LHUILLIER M,DHOME M,et al. Monoc ular vision for mobile robot localization and autonomous navigation [J]. International Journal of Computer Vi- sion, 2007, 74(3): 237-260.
  • 2SONG Xiao@ng, SONG Zbbin, SENEVIRATNE I. D,et al. Optical flow-based slip and velocity estimation tech- nique for unmanned skid-steered vehicles [C]// Intelli- gent Robots and Systems (IROS), 2008 IEEE/RSJ Inter- national Conference on. Nice: IEEE, 2008:101 106.
  • 3NISTER D, NARODITSKY O, BERGEN J. Visual odometry [C]// Computer Vision and Pattern Recogni- tion (CVPR), 2004 IEEE Computer Society Conference on. Washington, DC: IEEE, 2004, 1(1): 652-659.
  • 4HOWARD A. Real-time stereo visual odometry for au- tonomous ground vehicles [C]// Intelligent Robots and Systems (IROS), 2008 1EEE/RSJ International Confer- ence on. Nice: IEEE, 2008:3946-3952.
  • 5KITT B,REHDER J,CHAMBERS A, et al. Monocular visual odometry using a planar road model to solve scale ambiguity [C]// Proceeding of European Conference on Mobile Robots. Orebro: Is. n. ], 2011 : 43 - 48.
  • 6SUN D, ROTH S, BLACK M J. Secrets of optical {low estimation and their principles [C]// Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. San Francisco: IEEE, 2010 2432-2439.
  • 7LUCAS B D,KANAKE T. An iterative image registra- tion technique with an application to stereo vision [C]// International Joint Conference on Artificial Intelligence (IJC1A). Vancouver: AAAI,1981 .. 674 - 679.
  • 8BOUGUET J. Pyramidal Implementation of the affine Lucas Kanade feature tracker description of the algo- rithm [J]. Intel Corporation,2001, 5.
  • 9BAY H, ESS A, TUYTELAARS T, et al. SURF: speeded up robust features [J]. Computer Vision and Image Understanding ( CVIU ), 2008, 110 ( 3 ): 346 - 359.
  • 10聂仁灿,周冬明,赵东风.基于Unit-Linking PCNN和图像熵的图像分割新方法[J].系统仿真学报,2008,20(1):222-227. 被引量:20

共引文献71

同被引文献26

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部