期刊文献+

一种基于贡献矩阵的有向网络节点关键度计算方法

An Algorithm for Mining Key Nodes of Directed Networks Based on Contribution Matrix
下载PDF
导出
摘要 复杂网络中的关键节点,其重要程度一般要比非关键节点拥有更大影响力。目前已有的关键节点的关键度计算算法大多根据不同的衡量指标进行计算。针对适用于有向网络的关键节点挖掘算法较少且算法中不同衡量指标的结合不够严谨的情况,提出一种基于贡献矩阵的有向网络节点关键度计算算法。该算法通过贡献矩阵结合节点关联关系和节点的位置作为衡量节点关键度标准。在实验网络上的传播实验表明,相较于基于关联关系关键节点挖掘算法(RelaCentrality)来评估关键节点重要性,该算法在挖掘关键节点的过程中效率更高,并且所挖掘得到的关键节点在网络中对信息的传播更为广泛。 Critical nodes in complex networks are generally more important than non-critical nodes.Existing methods to calculate the importance of nodes are mostly based on different measurement criteria.At present,in the case of less calculation methods for node criticality applicable to directed networks and less rigorous combination of different measurement indexes in the methods,a new method for calculating node criticality of directed network is proposed.The algorithm calculates the node key value by combining the node relation and the node position with the contribution matrix.The propagation experiment on the experimental network shows that,compared with the classical algorithm that evaluates the importance of key nodes by node degree centrality and other methods,this algorithm is more efficient in the process of mining key nodes,and the mined key nodes spread information more widely in the network.
作者 庄天益 许国艳 孙洁 周星熠 朱进 ZHUANG Tian-yi;XU Guo-yan;SUN Jie;ZHOU Xing-yi;ZHU Jin(College of Computer and Information,Hohai University,Nanjing 211100,China)
出处 《计算机与现代化》 2019年第12期108-113,118,共7页 Computer and Modernization
基金 国家重点研发计划项目(2018YFC0407106)
关键词 有向网络 贡献矩阵 关联中心性 关键节点 影响力传播 directed network contribution matrices relational centrality key node influence propagation
  • 相关文献

参考文献11

二级参考文献82

共引文献526

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部