期刊文献+

利用卷积神经网络对CT图像进行定位的可行性研究 被引量:5

Feasibility Study on Location of CT Images Using Convolutional Neural Networks
下载PDF
导出
摘要 目的基于CT图像重建人体颈椎节段的三维模型和3D打印技术,为临床诊断提供清晰、特异的病变模型,提高模拟手术效果。方法采用AlexNet网络作为深度学习模型,并运用迁移学习对该模型进行预置。将训练样本按照椎体部位分为4类并进行标记,并利用数据扩增提高分类准确率。结果扩增后图像分类准确率由94.95%提高到97.72%,测试时间由2.05 s增加到3.03 s。结论利用卷积神经网络对CT图像进行身体定位是可行的,而数据扩增技术在提高分类准确率的同时也增加了训练及测试时间。 Objective To locate CT images by using the deep learning model based on convolutional neural network.Methods The AlexNet network was used as a deep learning model,which was preset by the transfer learning approach.Training samples were divided into 4 categories according to the vertebral body parts and labeled,and the data augmentation was used to improve the classification accuracy.Results The accuracy of image classification after augmentation increased from 94.95%to 97.72%,and the testing time increased from 2.05 s to 3.03 s.Conclusion It is feasible to use the convolutional neural network to locate CT images.The data augmentation approach can increase the classification accuracy but also increase the training and testing time.
作者 余行 蒋家良 何奕松 姜晓璇 傅玉川 YU Hang;JIANG Jialiang;HE Yisong;JIANG Xiaoxuan;FU Yuchuan(Department of Radiotherapy,West China Hospital of Sichuan University,Chengdu,610041)
出处 《中国医疗器械杂志》 2019年第6期454-458,共5页 Chinese Journal of Medical Instrumentation
关键词 卷积神经网络 CT图像定位 深度学习 数据扩增 convolutional neural network CT image localization deep learning data augmentation
  • 相关文献

参考文献5

二级参考文献32

  • 1International Commission on Radiation Units and Measurements. Re- port 83 :Prescrilaing, recording and reporting intensity modulated plao- ton beam therapy (IMRT) (ICRU report 83) [M]. Bethesda, MD: ICRU, 2011 : 1-106.
  • 2Sun Y,X/u XL, Luo W, et al. Recommendation {or a contouring method and atlas of organs at risk in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy [J]. Radiotla- er Oncol,2014,110(3) :390-397.
  • 3Nelms BE, Tom6 WA, Robinson G, et al. Variations in the con touring o{ organs at risk:test case from a patient with oroplaa- ryngeal cancer [J]. Int J Radiat Oncol Biol Plays, 2012,82 (1) : 368-378.
  • 4Han X, Hoogeman MS, Levendag PC,et aL Atlas based auto-segmen- tation of head and neck CT images [J]. Med Image Comput Assist Inter, 2008,11 (2) : 434-441.
  • 5Kouwenlaoven E, Giezen M, Struikmans H. Measuring similarity of target volume delineations independent of the number of ob- servers [J]. Phys Med Biol, 2009,54 (9) : 2863-2873.
  • 6Qazi AA, Pekar V, Kim J, et al. Auto-segmentation of normal and target structures in head and neck CT images:a feature-driv- en model-based approach [J]. Med Phys, 2011,38(11) : 160-170.
  • 7La Macchia M, Fellin F, Amiehetti M, et al. Systematic evalua- tion of three different commercial software solutions for auto- matic segmentation for adaptive therapy in head-and-neck, pros- tate and pleural cancer [J]. Radiat Orlcol,2012,7:160.
  • 8Sims R, Isambert A, Gregoire V, et al. A pre-clinical assessment of an atlas-based automatic segmentation tool for the head and neck [J]. Radiother Oueol, 2009,93 (3) : 474-478.
  • 9Teguh DN, Levendag PC, Voet PW, et al. Clinical validation of atlas based auto segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck [J]. Int J Radiat Oncol Biol Phys, 2011,81 (4) : 950- 957.
  • 10Simmat I,Georg P,Georg D, et al. Assessment of accuracy and efficiency o{ atlas-based autosegmentation for prostate radiotb.er- apy in a variety of clinical conditions [J], Strahlenther Onkol, 2012,188(9) : 807-815.

共引文献57

同被引文献33

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部