摘要
利用新定义的谱集,刻画了Hilbert空间上有界线性算子满足(ω1)性质和(ω)性质的等价条件.另外,利用该谱集,对算子函数的(ω)性质进行了判定.
Using the new spectrum we define in this paper,we characterize the necessary and sufficient conditions for the bounded linear operators on Hilbert spaces satisfying(ω1)property and(ω)property.Moreover,using this spectrum,we judge the(ω)property of functional calculus for operators.
作者
闫慧凰
曹小红
YAN Hui-huang;CAO Xiao-hong(Department of Mathematics,Changzhi University,Changzhi 046011,China;School of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710119,China)
出处
《数学的实践与认识》
北大核心
2019年第22期231-237,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(11471200)
陕西师范大学中央高校基本科研业务费专项资金(GK201601004)
关键词
(ω1)性质
(ω)性质
本质逼近点谱
(ω1)property
(ω)property
essential approximate point spectrum