摘要
讨论了具有延时的间断分数阶神经网络的全局非脆弱Mittag-Leffier同步,在设计的具有两种波动类型的非脆弱控制器的作用下,利用Lyapunov函数法,非光滑理论,矩阵不等式技巧等,建立了具有线性矩阵不等式形式的系统同步的充分性判据.最后,通过一个数值算例验证了设计控制器的可行性及所得理论的正确性和有效性.
The paper is concerned with the global non-fragile Mittag-Leffler synchronization of discontinuous fractional-order neural networks with time delay.Under the designed nonfragile controller with two types of fluctuation,the sufficient criterion for synchronization with linear matrix inequality(LMI) is established by applying Lyapunov function method,non-smooth theory,matrix inequality techniques,etc.Finally,a numerical example is given to verify the feasibility of the designed controller and the correctness and validity of the theory.
作者
王有刚
武怀勤
WANG You-gang;WU Huai-qin(Department of Mathematics,Luliang University,Luliang 033001,China;College of Science,Yanshan University,Qihuangdao 066004,China)
出处
《数学的实践与认识》
北大核心
2019年第21期287-294,共8页
Mathematics in Practice and Theory
基金
国家自然科学基金(61573306)
关键词
分数阶神经网络
间断激励函数
非脆弱控制
微分包含
线性矩阵不等式
fractional-order neural networks
discontinuous activation functions
non-fragile control
differential inclusions
linear matrix inequalities