期刊文献+

铜的硫化物对电极在量子点敏化太阳能电池中的应用

The Application of Copper Sulfide Counter Electrode in Quantum Dot Sensitized Solar Cells
下载PDF
导出
摘要 近年来,量子点敏化太阳能电池(Quantum dots-sensitized solar cells,QDSSCs)因其制备成本低、工艺简单及量子点(Quantum dots,QDs)的尺寸效应、多激子效应和高的理论转化率等优点,受到广泛关注。由其结构和原理可知,对电极作为QDSSCs的重要组成部分之一,对QDSSCs的电池的光电转化效率有重要影响。铜的硫化物是当前最常用和催化效果最好的对电极,本文首先介绍了QDSSCs的工作原理,然后重点总结了铜的硫化物对电极的分类、制备方法及优缺点,并就对电极的发展前景进行了展望。 Quantum dot-sensitized solar cells(QDSSCs)have attracted much attention in the past few years because of low cost,easy fabrication,size-dependence bandgap and multiple exciton generation of quantum dots(QDs)and high theoretical photoelectric conversion efficiency(PCE)merits.For its structure and principle,the counter electrode is one of the most important components of QDSSCs,which has an important impact on the photoelectric conversion efficiency of QDSSCs.Copper sulfide is the most commonly used counter electrode and has the best catalytic performance.This review firstly demonstrates the working principle of QDSSCs.Furthermore,the classification,preparation methods and the advantages and disadvantages of copper sul?fide counter electrode are introduced in detail.Finally,the future research direction of copper sulfide counter electrode materials has been predicted.
作者 郭平春 罗俊 王艳香 GUO Pingchun;LUO Jun;WANG Yanxiang(School of Materials Science and Engineering,Jingdezhen Ceramic Institute,Jingdezhen 333403,Jiangxi,China)
出处 《陶瓷学报》 CAS 北大核心 2019年第5期574-582,共9页 Journal of Ceramics
基金 国际科技合作专项资助项目(2013DFA51000) 江西省自然科学基金(20171BAB213003) 江西省教育厅科学基金(GJJ180745)
关键词 量子点敏化太阳能电池 铜的硫化物 对电极 研究进展 发展趋势 quantum dot sensitized solar cells copper sulfide counter electrode research progress development
  • 相关文献

参考文献2

二级参考文献53

  • 1Semonin, O.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J.; Nozik, A. J.; Beard, M. C. Science 2011, 334, 1530. doi: 10.1126/science. 1209845.
  • 2Mora-Sero I.; Bisquert, J. J. Phys. Chem. Lett. 2010, 1, 3046 doi: 10.1021/jz100863b.
  • 3Ruhle, S.; Shalom, M.; Zaban, A. ChemPhysChem 2010, 11, 2290. doi: 10.1002/cphc.201000069.
  • 4Hetsch, F.; Xu, X.; Wang, H.; Wang, H.; Kershaw, S.; Rogach, A. L. J. Phys. Chem. Lett. 2011, 2, 1879. doi: 10.1021/jz200802j.
  • 5Yu, X. Y.; Liao, J. Y,; Qiu, K, Q.; Kuang, D. B.; Su, C. Y, ACS Nano 2011, 5, 9494. doi: 10.1021/nn203375g.
  • 6Jovanovski, V.; Gonzdlez-Pedro, V.; Gimenez, S.; Azaceta, E.; Cabanero, G.; Grande, H.; Tena-Zaera, R.; Mora-Sero, I.; Bisquert, J. ,L Am. Chem. Soc. 2011, 133, 20156. doi: 10.1021/ ja2096865.
  • 7Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595. doi: 1021/cr900356p.
  • 8Hodes, G.; Manassen, J.; Cahen, D. J Electrochem. Soc. 1980, 127, 544. doi: 10.1149/1.2129709.
  • 9Mitzi, D, B. Inorg. Chem, 2007, 46, 926. doi: 10.1021/ic0621291.
  • 10Hu, L. H.; Dai, S. Y.; Weng, J.; Xiao, S. F.; Sui, Y. F.; Huang, Y.; Chen, S. H.; Kong, F. T.; Pan, X.; Liang, L. Y.; Wang, K. J. J. Phys. Chem. B 2007, 111,358. doi: 10.1021/jp065541a.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部